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ABSTRACT

Biodiversity has become a terminology familiar to virtually
every citizen in modern societies. It is said that ecology
studies the economy of nature, and economy studies the
ecology of humans; then measuring biodiversity should be
similar with measuring national wealth. Indeed, there have
been many parallels between ecology and economics,
actually beyond analogies. For example, arguably the
second most widely used biodiversity metric, Simpson
(1949)’s diversity index, is a function of familiar Gini-index
in economics. One of the biggest challenges has been the
high “diversity” of diversity indexes due to their excessive
“speciation”—there are so many indexes, similar to each
country’s sovereign currency —leaving confused diversity
practitioners in dilemma. In 1973, Hill introduced the
concept of “numbers equivalent”, which is based on Renyi
entropy and originated in economics, but possibly due to
his abstruse interpretation of the concept, his message
was not widely received by ecologists until nearly four
decades later. What Hill suggested was similar to link the
US dollar to gold at the rate of $35 per ounce under the
Bretton Woods system. The Hill numbers now are
considered most appropriate biodiversity metrics system,
unifying Shannon, Simpson and other diversity indexes.
Here, we approach to another paradigmatic
shifft ~—measuring biodiversity on ecological
networks —demonstrated with animal gastrointestinal
microbiomes representing four major invertebrate classes
and all six vertebrate classes. The network diversity can
reveal the diversity of species interactions, which is a
necessary step for understanding the spatial and temporal
structures and dynamics of biodiversity across
environmental gradients.
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INTRODUCTION

Biodiversity loss is one of the biggest challenges humans face
today and in foreseeable future. Measuring biodiversity, as the
foundation for dealing with biodiversity loss, seems to be
deceivingly simple. In retrospective, although started as early
as 1940s, debates and confusions regarding the “diversity”
(excessive number) of diversity indexes, continued until the
beginning of the 215t century, which left the practitioners of
biodiversity producing hardly comparable diversity numbers
across literatures or regions. For example, arguable the top
two widely used diversity indexes (Shannon entropy and
Simpson diversity indexes) can be said to measure different
aspects of diversity (Shannon & Weaver, 1949; Simpson,
1949), but both are hardly comparable and nor convertible.
The rediscovery of Hill numbers during the last decade and so
has resolved the major issues, and opened a new chapter for
measuring diversity, but it is still not widely applied by
practitioners. In last few years, researchers have begun to
address another issue in measuring biodiversity —ignoring
species interactions—which requires a paradigmatic shift, i.e.,
measuring biodiversity on ecological networks. The primary
objective of this study is to port Ohlmann’s etal. (2019)
network diversity framework to microbial species co-
occurrence networks of animal gastrointestinal microbiomes
(with 4 903 samples of 318 animal species covering four major
invertebrates and all six vertebrate classes). In consideration
of the early debates on diversity indexes and emerging nature
of network diversity research, we present a slightly more
detailed review on the key literatures with a secondary
objective to offer the practitioners a tutorial summary on the
latest advances in measuring biodiversity.

Measuring biodiversity is of obvious importance both
theoretically and practically. Nearly all existing measures
(metrics) for biodiversity contain two key elements: one is
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variety and another is variability of the variety among living
organisms in the environment (Chao etal., 2014b; Gaston,
1996). For example, species richness, arguably the simplest
diversity index, is simply the number of species (varieties) in a
community. For another example, with more sophisticated,
familiar Shannon entropy (D), the variety can be species, and
the variability can be the abundance of each species or
species abundance (p)), i=1, 2, ...S, where S is the number of
species, then the diversity measured with Shannon entropy is
D=-Y3pin(p). It can be said that Shannon diversity index
simply synthesizes the two components of diversity with
Shannon entropy function. Shannon entropy is named after C.
E. Shannon, who is the founder of modern information theory,
but Shannon never studied biodiversity. The entropy function
plays the role of computing the “uncertainty” (variability or lack
of information) about species identities in a community (Jost,
2006). For instance, when a community only contains one
species, then p=1, S=1, and D=0, there is no uncertainty
(variability) in the community when one randomly picks an
individual. When there are two species, each with 50% relative
abundance, then Shannon entropy D=0.69. In contrast,
assuming the same two species, but one species with 80%
abundance and another with 20% abundance, then Shannon
entropy D=0.50. This example illustrates two points: (i) the
species richness (R) as the number of species in the
community, R=2, is not useful in distinguishing the two
communities with different species relative abundances ((50%,
50%) vs. (80%, 20%)) since two communities may have very
different productivities; (ii) Shannon entropy measures the
uncertainty, which is equivalent with lack of information or
unevenness in the community, and turns out to be rather
useful in differing the two community. The first community of
two species with (50%, 50%) relative species abundances has
higher evenness (uncertainty) than the second community that
also has two species but with uneven species abundance
distribution of (80%, 20%), i.e., D~0.69>D»~0.50. The higher
evenness (higher entropy) means that, when one randomly
picks an individual, it is more difficult to correctly guess its
species identify, i.e., higher uncertainty or less informative
(low level of information). Therefore, while species richness
(R) as a rough estimate of biodiversity can be useful in certain
occasions, Shannon entropy is obviously more appropriate in
measuring biodiversity.

One would wonder why Shannon entropy, which was
designed to measures the information associated with an
event (more strictly information associated with a random
variable), was chosen to measure biodiversity. For example, a
convenient choice for measuring biodiversity could be
statistical mean (average) of species abundances. Still with
the previous example of two species community, if the
average is used to measure biodiversity, then both
communities will again have the same diversity since
(20%+80%)/2=(50%+50%)/2=0.5. In this case, statistical
average failed to distinguish two obviously different
communities. The failure has to do with the statistical
distribution of species abundance frequency (distribution),
which almost always follows highly skewed J-shaped
distributions (e.g., lognormal, power-law distributions) and
rarely follows symmetrical Gaussian distribution. For highly
skewed distribution such as lognormal and power law
distributions, statistical mean (average) is usually a poor
statistic. For power law distribution, there is so-termed no-
average property, which means that the average of the
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distribution cannot represent most data points in the
distribution. Therefore, ecologists made a right choice for
measuring biodiversity by selecting Shannon entropy rather
than more familiar statistical average.

However, Shannon entropy is far from perfect, ecologists
have been searching for better diversity measures since the
introduction of Shannon entropy, familiar Simpson index
(Simpson, 1949) was invented almost the same time as
Shannon entropy index (Shannon, 1948). As commented in
Southwood & Henderson (2000), “the result has been an
“explosive speciation” of diversity indices, which initially
brought confusion to the subject; in addition, the
ubiquitousness of some relationships and the apparent
constancy of certain numerical values have added a measure
of mystique”. Indeed, for quite a long period, the debates on
diversity indexes had confused practitioners of biodiversity
research and conservation, which prompted some scholars to
publish consumer’s guide materials ( e.g.,.Smith & Wilson,
1996). Furthermore, reviews and monographs were written to
discuss deceivingly simple diversity indexes (e.g., MacArthur,
1965; Magurran, 2004; Southwood & Henderson, 2000). The
core issue of these debates around diversity measures lied in
the excessively high “diversity” (of diversity indexes) from
“explosive speciation” of diversity indices characterized by
Southwood & Henderson (2000). The excessive “diversity” of
diversity indexes implies high uncertainty—Ilack of consensus
on the appropriateness of different diversity indexes, and what
is even worse is that the values of different diversity indexes
are hardly comparable. Using an analogy, measuring
biodiversity is more like different countries (researchers) using
different currencies (diversity indexes), and unlike currency
exchanges, there was not a mechanism to convert the values
of different diversity indexes until recent years.

It should be mentioned that there are other issues regarding
diversity measures, most notably, the definitions of beta-
diversity and gamma-diversity. All of the previous discussion
on diversity indexes is, in default, about alpha diversity, which
is the diversity of a single community. Gamma diversity refers
to the total diversity of multiple (local) communities, equivalent
to the alpha-diversity of the metacommunity consisting of the
multiple local communities. While gamma diversity can be
defined and measured from alpha-diversity in a relatively
straightforward manner, defining and measuring beta-diversity
turn out to be rather complex and have been a hotspot for
debates. Beta-diversity conceptually refers to the difference
between (among) two (multiple) communities. Even with the
simplest case of two local communities, there are at least two
ways to define beta-diversity: additive (B=y-a) or
multiplicative  (8=y/a). Intuitively, both schemes are
reasonable and may have their own merits. However, the
results from two schemes can be different, and may even
generate paradox. Since their definitions ultimately rely on the
adoption of basic diversity indexes discussed previously, the
beta-diversity definitions inherit the previously identified
issue—Ilack of consensus due to lack of comparability. Using
an analogy, if “alpha-diversity” measures the “wealth
evenness or unevenness” (diversity) of a country, “gamma-
diversity” measures the wealth evenness of the world, then
“beta-diversity” can be defined to measure the difference
between two countries. In fact, the well-known Gini-index,
which measures the wealth distribution (evenness or
unevenness) of a country, is a function of Simpson’s diversity
index in community ecology (Ma & Ellison, 2018). Obviously, a



beta-diversity of Gini-index for comparing two countries can be
multiplicative or additive. For example, country A’s Gini-index
is twice the world average Gini-index would be multiplicative
version, and the difference between country A’s Gini-index is
0.2 or (20%) would be additive version. The two numbers from
multiplicative and additive definitions per se are not
comparable at all.

Ecology can be considered as nature’s economy or
economy of plants and animals, and economy can be
considered as the ecology of humans; both ecological
systems and economic systems consist of various production
and consumption systems in the form of food webs (nature),
supply chains (human industry), driven by fundamental
processes such as competitions, cooperation, symbiosis,
predation (war) etc. Therefore, measuring biodiversity in
ecology is not unlike measuring wealth in human societies in
economics. It was not coincidental that Gini-index in
economics and Simpson’s diversity index in ecology can be
derived from each other. In fact, Ma & Ellison (2018, 2019)
dominance concept in ecology is applicable to both population
and community levels, and if applied to economics, then it
means that one can define a Gini-index for a citizen, besides a
Gini-index for a country. The underlying mechanism for their
relationship is that dominance metrics, Simpson’s diversity
index, and Gini-index possess mathematical functional
relationships (Ma & Ellison, 2018, 2019).

Beyond the previously identified two issues regarding
biodiversity measures, i.e., excessive number of biodiversity
indexes and the complexity of beta-diversity, a third widely
known, also equally serious issue with the previous ones, is
the so-termed sampling problem in diversity estimation. The
issue is rooted in the hard reality that it is hardly possible to
survey the whole community and diversity must be estimated
from finite samples taken from the community under
investigation. Therefore, errors in diversity estimates are
hardly avoidable with finite sampling efforts, and the problem
is simply to estimate the diversity of “population” (sensu
statistics, not sensu ecology) from the diversity of “samples’
(sensu statistics, not ecology). In standard statistics, variance,
standard errors, and confidence intervals must be attached to
the diversity estimates, but this practice has rarely been
followed in diversity estimation. An even more serious part of
the sampling problem is rooted in the previously mentioned,
highly skewed distribution of species abundance distributions.
The high-skewness makes it extremely costly for samples to
fully cover low-abundance (rare) species, especially possibly
many singletons (species represented by single individual) in
a community. This also means that the diversity estimates are
usually very sensitive to samples or sampling efforts, and it
can be rather difficult to know when sufficient sampling efforts
are made. To remedy the sampling problem, researchers have
developed the so-termed rarefaction estimation approach to
extrapolating the number of total species in the community,
but the rarefaction itself is not a perfect solution either
because it depends on another rather complex
problem—Good’s coverage problem, which was first studied
by the founder of modern computer science, Alan Turing, who
studied it but did not publish it and later published by I. J.
Good with the permission from Turing (Good, 1953, 2000;
Good & Toulmin, 1956).

A fourth issue in measuring biodiversity is to do with the
scope of biodiversity. Fairly speaking, this issue is more to do
with the scope of biodiversity research and is far less technical

than the previously discussed three types of problems. Much
of biodiversity research has been focused on species
diversity, especially the species diversity of plants and
animals, until the recent two decades when microbial diversity
receives increasing attention thanks to the revolutionary
metagenomic sequencing technologies and the launch of
Human Microbiome Project (HMP) and Earth Microbiome
Project (EMP). However, biodiversity should not be limited to
the diversity of organisms per se for scientific, technological or
humanity advances (benefits). Intuitively, the elements of
biodiversity, variety and variability (uncertainty) can be
extended from organisms per se to any of their associated
properties, most notably, genes (genome), metagenomes,
functions, phylogeny, metabolic functions, etc. (Chao etal.,
2014b; Ma, 2018c, 2023; Ma & Ellison, 2021; Ma & Li, 2018;
Ma etal, 2020). Therefore, measuring biodiversity, as
foundation for community ecology and as practical tools for
biodiversity conservation has far broader scope (from gene,
species, functions, etc.) and significant implications
(conservation strategies, ecosystem services, global changes,
etc.).

The four issues (problems) mentioned above are now
largely resolved thanks to the introduction (Hill, 1973), actually
the re-introduction (Jost 2007; Chao etal.,, 2012, 2014b;
Ellison, 2010; Jost, 2010; Ma, 2018c), of a new metric system
for biodiversity, i.e., the Hill numbers (Hill, 1973). Hill numbers
are actually based on Rényi (1961) entropy. It can be said that
Renyi (1961) entropy is of more mathematical generality than
Shannon (1948) entropy, and therefore has achieved wider
applications in many fields, including economics and quantum
computing. Hill (1973) formulated its application for measuring
biodiversity inspired by its success in economics, where the
concept of “numbers equivalent of elements” was originated.
According to Hill (1973), the diversity of a community should
be measured with “numbers equivalent” (i.e., namely, Hill
numbers) —the number of equally likely elements (such as
individuals or species) necessary to generate the observed
diversity being measured by a diversity index. It might be this
scientifically rigorousabstruse Hill numbers in ecology
scientifically rigorous, but likely too abstruse to easily
comprehend concept/statement that had prevented the wide
adoption of Hill numbers in ecology. The Hill numbers (Hill,
1973) had not received attention it deserves until nearly four
decades later when a group of scholars reintroduced it into
ecology. It is estimated that during the last decade and so,
more than a dozen core methodological papers exclusively
devoted to the Hill numbers and its applications have been
published in top-tiers ecological journals such as Ecological
Monographs, Ecology, Ecology Letters, Annual Review of
Ecology and Systematics, and Methods in Ecology and
Evolution. Here, using less rigorous, analogical terminology,
we further expose Hill (1973) concept of “numbers equivalent
of elements” as follows: Basically, he was saying that, | have
discovered that using Renyi entropy, we can establish a gold
standard, in which all existing diversity indexes, possibly many
other diversity indexes people may continue to propose in
future, can be unified with my or Hill numbers. In other words,
the values of other diversity indexes can be converted with my
“gold standard” into a series of Hill numbers, for which | assign
a diversity order g=0, 1, 2, ... Using an analogy of economics
again, what Hill (1973) wished to establish was not unlike to
link the US dollar to gold at the rate of $35 per ounce under
Bretton Woods system. Under the Bretton Woods system, US
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dollars were as good as gold, and all currencies could be
pegged to US dollars, equivalently to gold (e.g.,Mason &
Asher, 1973). Similarly, with Hill numbers, all other diversity
metrics, existing ones and possibly future ones, can be
converted into Hill numbers (Hill, 1973). With Hill numbers as
“gold” standard, the previously identified first issue as

criticized by Southwood and Henderson (2000) as excessive
“diversity” of diversity index, i.e., the lack of consensus on
which diversity index is better, is a moot issue. That is, Hill
numbers are “gold” standard, and all other diversity indexes
can be converted into one of the Hill numbers corresponding
to a diversity order (q). Chao et al. (2012) further clarified Hill
numbers as, D(q)=[YLp’]"""” where S is the number of
species in the community, g=0, 1, 2, ... is the diversity order,
D(q) is the Hill numbers at diversity order g. When diversity
order g=0, D(0)=S, this is the traditional species richness.
When q=1, D(1)=exp(D)=exp{-Yipin(p)}, Which is the
exponential function of previously defined Shannon entropy
(D), hence, Shannon entropy can be converted into the Hill
number at the 1% diversity order (g=1). When g=2,
D(2) = (1/Y3,p7), which is the reciprocal of Simpson diversity
index, again convertible to the gold standard of Hill numbers.
In the Hill numbers system, different diversity indexes
(different Hill numbers at different diversity order q) actually
possess more intuitive interpretations. For example, when
g=0, species richness means that every species is treated
equally, regardless of their abundances. Using an analogy in
economics, it means that each person, regardless of their
wealth, only contribute one count to the population number.
When g=1, the Hill number (diversity) is the number of “typical
species” in the community where each species is weighted in
proportional to its abundance. In economics, this would mean
that each person is counted in proportional to his or her
wealth. When g=2, the Hill number is weighted in favor for
more abundant species. In economics, this would mean that
wealthy people get more weights, and poor people weigh in
less and could be ignored. In other words, the Hill number of
diversity order g=2, is more suitable for measuring the
diversity of dominant species, when ignoring rare species is
justified. Not coincidently, the Gini-index, which can be
converted with Simpson’s index or D(2), is particularly suitable
for revealing the effects of millionaires, the unevenness of
wealth distribution. It can be said that evenness and
unevenness (approximate to dominance or heterogeneity) are
the both sides of same coin (Li & Reynolds, 1995; Ma, 2015,
2018a, 2018b, 2019a, 2019b, 2021c, 2022; Ma & Ellison,
2018, 2019; Ma & Taylor, 2020 ).

It was probably the above analyzed merits of Hill numbers,
as well as other advantages of Hill numbers, a few
consensuses regarding the previously identified four issued
have emerged during the last decade. The first consensus is
that “numbers equivalent”, i.e., the Hill numbers is the most
appropriate for measuring alpha diversity ( Chao et al., 2012;
Chao et al., 2014b; Ellison, 2010; Ma et al, 2019). Second, the
multiplicative version (partition) of Hill numbers is more
appropriate than additive partition for deriving beta-diversity
(Chao etal.,, 2012, 2014b). Furthermore, to deal with the
sampling problem in measuring diversity (i.e., the third issue),
Chao etal. (2014a) extended rarefaction approach to Hill
numbers (Chao & Jost, 2012, 2015; Chao et al., 2013, 2015a,
2015b). In addition, to measure other kinds of biodiversity
beyond species diversity (the fourth issue mentioned
previously), the Hill numbers for phylogeny (Chao etal.,
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2014b; Chiu etal., 2014), genes, and metagenomes (Ma,
2018c, 2023; Ma & Li, 2018; Ma, etal., 2020) have been
developed and applied.

The previous introduction seems to suggest that the major
issues in measuring diversity have been resolved during the
first decade of this century. It turned out that Hill numbers,
while advantageous over virtually all existing diversity indexes,
still cannot deal with another important issue in community
ecology, that is species interactions. Back to the previous
examples of two species communities, a community of wolf
and bear and a community of wolf and deer would be rather
different. In the community (habitat) of wolf and bear, both are
apex predators and opportunistic carnivores and their
relationship is largely competitive, but usually they are not
each other’s prey. On the other hand, the community of wolf
and deer, wolves may try to prey on as many as deer as they
can. Traditional diversity indexes do not consider species
interactions and offer little insights for comparing the previous
two communities involving wolves. A solution to deal with such
an issue requires a paradigmatic shift in measuring
biodiversity, one venue is to move biodiversity concept on
complex networks that captures species interactions. Defining
and computing network diversity or moving biodiversity
measures on to species interaction networks is an emerging
field in recent years (Eagle etal 2010), and two pioneering
studies are Ohlmann etal. (2019) and Luna etal. (2020).
However, both approaches did not offer universally applicable
approaches for building species interaction networks. The
objective of the present study is to innovatively apply Ohlmann
etal. (2019) approach to measure the microbial diversity on
AGM (animal gastrointestinal microbiome) networks. Besides
applying Ohlmann et al. (2019) definitions and procedures, we
first construct AGM networks with SparCC algorithms and
further developed statistical methods for comparing the
network biodiversity. To the best of our knowledge, this study
should be the first attempt to measure biodiversity on
microbial networks, and we use big datasets including 4 903
AGM samples covering 319 animal species representing four
major invertebrate classes and all six vertebrate classes,
collected from 108 published studies on animal gut
gastrointestinal microbiomes (Ma, 2021a, 2021b; Ma et al.,
2022).

MATERIALS AND METHODS

Figure 1 illustrates the study design and computational
procedures used in this study. The computational codes we
developed are provided in the online supplementary
information. Besides using our own codes, Friedman & Alm
(2012) SparCC algorithm (https://bitbucket.org/yonatanf/sparcc)
(see introduction below) is used to build complex networks.
Specifically, we use their C++ version of SparCC, named
FastSpar (https://github.com/scwatts/FastSpar), which uses
the same algorithm as SparCC but runs much faster.

The AGM (Animal Gastrointestinal Microbiome) dataset

We surveyed 108 publications of animal gastrointestinal
microbiomes (AGM) and collected 6 900 AGM samples using
16S-rRNA metagenomic sequencing technology. Enforcing
quality control eliminated 1 997 samples and left 4 903 AGM
samples spanning all three major animal phyla (i.e.,
Nematoda, Arthropoda, and Chordates), and ten major animal
classes (including four major invertebrates and all six
vertebrates), 59 orders, 142 families, 261 genera, and 318



Figure 1 A Diagram showing the study design and computational procrdures of this study

species. The ten animal classes covered by the 4 903
samples are: Chromadorea, Arachnida, Malacostraca,
Insecta, Chondrichthyes, Actinopteri, Amphibia, Sauropsida,
Aves, and Mammalia. Insects (76 species) and mammals (123
species) represented for the largest proportions of host
species, and contributed 979 and 1 499 AGM samples,
respectively. Both the classes occupy 62.6% of host species
and 51% of AGM samples. These same datasets have been
analyzed in our previous studies (Ma, 2020a, 2020b; Ma et al.,
2022) with different research objectives from this study, and
detailed information about these AGM samples can be found
in the Supplementary Table S7 of Ma et al. (2022).

We further categorize the 4 903 AGM samples into three
diet types, including 1 421 carnivores, 1 229 herbivores, and 1
473 omnivores groups, respectively. The remaining 780 AGM
samples could not be categorized into any of the three major
diet types and were excluded in the diet-type related modeling
(but still included in regular host taxon-based analysis).

Besides enforcing the previously mentioned quality control
(details outlined in Ma et al., 2022) that removed 1 997 (29%)
AGM samples, we recomputed the OTU tables from the raw
16S-rRNA reads using QIIME-2 software (v.2018.6.0, Boylen
etal.,, 2019. The OTUs from QIIME2 are species because it

uses the machine learning algorithm to cluster the reads of
100% similarity as an OTU, and the clustered OTU is then
aligned to a taxon (species in our re-computation) against the
Greengenes database. A total of 473 359 bacterial species
were obtained from the recalculation of the 4 903 AGM
samples.

Network diversity: measuring biodiversity on complex
ecological networks

One motivation to measure biodiversity on complex networks
is the previous introduced examples of two different
communities (in the introduction section): community of (wolf
and deer) vs. community of (wolf and bear). The species
relationships (interactions) in both communities are obviously
different. In the first community, wolfs may eat up deer
population, and the community diversity in terms of Shannon
evenness entropy may approach to zero. While in the second
community, wolfs and bears may reach some kind of
equilibriums and the community diversity is unlikely to be zero.
In classic community ecology, species interactions are
typically modelled with differential equations, known as Lotka-
Volterra equations, pioneered by Alfred Lotka and Vito
Volterra, most time actually independently (e.g., Lotka, 1925;
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Volterra, 1931). Lotka-Volterra equations started with two-
species interactions, and they can be extended to N-species
interactions with differential equation system of N-equations.
In fact, Lotka-Volterra equations have been the primary
approach to investigate ecological community (Kingsland,
1995; May, 1973), in particular, species interactions in the
settings of food webs, and the approach can be harnessed to
investigate different species interactions including competition,
predation, symbiosis, commensalism as well as their
implications effects onto community stability (e.g., whether or
not wolfs will extinguish deer populations). However, the
approach has certain limitations. First, the analytical solutions
are generally too complex to be tractable even for
communities of moderate number of species, and computer
simulations must be used. Second, parameterization of large-
scale differential equations systems with experimental data of
plants and animals are wusually practically infeasible.
Metagenomic technologies, which makes it possible to obtain
the species abundance data of microbial community samples,
within days if not hours, offer unprecedented opportunities to
parameterize large-scale model systems for microbial
communities. In the meantime, the advances in complex
network science have made the option of using Lotka-Volterra
differential equation systems less attractive because the
network approach is not only simpler but also produce
excellent visualization of species interaction patterns. The
network graphs with nodes representing for species and links
(edges) representing for their interactions, are much more
intuitive to most ecologists than phase portraits generated by
Lotka-Volterra differential equations.

There have been extensive studies on ecological networks
during the last few decades; however, to the best of our
knowledge, we are only aware of a handful of studies that
formally defined biodiversity on ecological networks (e.g.,
including: Bersier etal.,, 2002; Poisot etal.,, 2012a, 2016;
Ohlmann et al., 2019; Luna et al., 2020). Here, we focused on
the latest two studies. As a side note, there were earlier
studies on network diversity, notably Rafols & Meyer (2010);
Stirling (2007), which compute the diversity of network nodes,
but often ignore the nodes interactions or lack comprehensive
synthesis of node and link information as performed by the
latest studies on network diversity mentioned previously (e.g.,
Ohlmann et al., 2019).

Ohlmann etal. (2019) proposed a generic model for
ecological networks by extending the probabilistic network
model by Poisot etal. ( 2016). The probabilistic network
model, while theoretically solid as model of ecological
networks, in our opinion, seems to be unnecessarily complex
for the purpose of this study given that the extensive AGM
datasets allow us to build realistic microbial species co-
occurrence networks (SCN). Furthermore, we argue that the
SCNs we are to build with SparCC correlation coefficients, are
essentially an empirical implementation of their probabilistic
network model, implemented with metagenomic species
abundance distribution (SAD) data. With these considerations,
we adopt Ohlmann etal. (2019) definitions for network
diversity, but not their approach to building microbial networks
for the AGM datasets. In Luna et al. (2020) study on network
diversity, they defined network diversity mostly in the context
of trophic food webs, and they did not offer approach to
building complex ecological networks with large-scale
metagenomic datasets. In consideration that they did not
adopt Hill numbers, given the advantages of Hill numbers, we
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skip their definitions of network diversity in this study. An
advantage of Luna et al. (2020) paper is that they presented
insightful discussion on network diversity, especially their
implications to community ecology and biogeography, from
which we draw excellent insights in our discussion section.
Below, we outline the procedures to build the microbial SCN,
and in the next subsection, we summarize the definitions and
procedures for computing the network diversity for the SCNs
built with the AGM datasets.

To build species co-occurrence network, the first step is to
select an algorithm for computing species correlation
coefficients, i.e., using correlation relationships to reveal
cooccurrence relationships. We choose the SparCC algorithm
developed by Friedman & Alm (2012) (https://bitbucket.org/
yonatanf/sparcc), rather than using more traditional Pearson
correlation coefficient and Spearman rank correlation
coefficient, because it alleviates a fundamental issue
associated with compositional species abundance data. The
issue is that, with compositional data (Aitchison, 2003), many
standard methods for estimating correlation coefficients
including Pearson and Spearman correlations are biased
since the relative abundances must be summed to 100%
(Friedman & Alm, 2012). This constraint makes the relative
abundances not independent, tending to be negatively
correlated, regardless of the true correlations (Friedman &
Alm, 2012). Theoretically, the true correlations can be
accurately determined by absolute abundances, but the true
absolute abundances are not available in metagenomic
sequencing data. There is a C++ version of SparCC, named
FastSpar (https://github.com/scwatts/FastSpar), which uses
the same algorithm as SparCC but much faster. During the
computation, to minimize the spurious effects of extremely
rare OTUs, we filter out the extremely rare OTUs that occurs
in less than or equal to 2% of the AGM samples for building
the networks in this study.

In our opinion, an observation on SparCC algorithm is
worthy of notice. The compositional effects Friedman & Alm
(2012) aimed to alleviate with their SparCC algorithm is
related to a suit of logical inference fallacies in statistics often
under different names, most notably, association paradoxes,
Simpson’s paradox, aggregation, amalgamation, or reversal
paradoxes (Bradford et al., 2014a, 2014b; Carlson, 2023). The
problem was already noted by Pearson (Pearson, 1897, cited
in Friedman & Alm, 2012), but obviously still needs attention
today. Although statistician Edward Simpson’s name was
used, he only pointed out that the association paradoxes were
widely known before his classic 1951 paper (Simpson, 1951),
and obviously he never made the claim for the discovery. Of
course, he did claim his Simpson’s diversity index, which he
published two years earlier (Simpson, 1949) and is arguably
considered as the second most widely used diversity index,
perhaps only after Shannon entropy (Shannon, 1948). Even
with the Renyi-entropy based Hill numbers (Hill, 1973) that
unified virtually all existing diversity indexes, Simpson’s
diversity index, as a reciprocal of Hill numbers at diversity
order (g=2), still occupies an important position. Simpson’s
paradox may not only occur in the association (correlation)
analysis, as in Pearson or Spearman correlation coefficients
with compositional data, but also in traditional biodiversity
analysis, at least with species richness (e.g.,Scheiner et al.,
2000). However, detecting when Simpson’s paradox may
occur is usually not trivial, and avoiding its introduction in the
methods for biodiversity analysis is of obvious significance, for



which we will have a brief elaboration in the discussion
section.

Network diversity framework proposed by Ohimann et al.
(2019)

The design goal of Ohlmann etal. (2019) framework for
network diversity is to understand the structure (topology) and
composition of ecological networks across spatial and
temporal scales and along environmental gradients (Ohimann
et al., 2019; Pellissier et al., 2017). The general principles they
proposed can be summarized as following four points.

(i) First, Hill numbers, given the generally unifying power of
the Hill numbers, they rightly choose to port the regular Hill
numbers, which are briefly reviewed in the Introduction
section, to ecological networks.

(i) Second, the framework must consider both the
probabilistic nature of biotic interactions and the abundances
of species or groups. Ohlmann etal. (2019) argued that
ecological networks should be analyzed across various
species aggregation levels because species redundancy and
trophic structures in communities (ecosystems) require so.
Hence, in their framework, species and species groups (which
can be different taxa, diet types, functional guilds, etc.) are
treated as explicit units for defining and computing network
diversity. With this notion, they distinguish microscopic,
mesoscopic and macroscopic scales, depending on the levels
of species aggregation adopted. The microscopic scale
network refers to network built with all species, the
mesoscopic scale network (also termed image network) refers
to network built with species groups, and the macroscopic
scale network refers to the single value of connectedness
representing the probability of interactions between any two
species. The macroscopic network only has one single node
with abundance=100%, and a single link to itself, and it is
essentially the case when image network degenerates to its
limit of grouping all species as a single group.

(iii) Third, the framework is applicable for measuring
network diversity locally (with alpha-diversity), regionally and
globally (with gamma-diversity), and between local
communities (networks) (with beta-diversity). The framework
is hence across local networks and defined on the meta-
network scale. The metanetwork is a weighted network,
consisting of multiple (K) realized local networks, and any
grouping of species is defined on the meta-network, which in
our opinion ensures the feasibility to implement the Hill
numbers.

(iv) Fourth, the framework includes three kinds of network
diversity: all are based on the Hill numbers, and all are
applicable for species or species groups (i.e.,, from
microscopic to macroscopic scale networks): (A) The network
diversity in species (group) abundances (NDSA), D(p) is
computed with species (group) relative abundance. (B) The
network diversity in link probabilites (NDLP), D(m) is
computed with adjacent matrix, in which link probabilities are
not weighted by species (group) abundances and it assumes
evenly distributed species abundances. (C) The network
diversity in link abundances (NDLA) is computed with
abundance weighted adjacent matrix. In the following, we
briefly introduce the formulae of the three ND definitions
based on Ohimann et al. (2019) probabilistic network model at
species level.

Assuming a given region that is inhabited by individuals of n
different species with relative species abundances p=(ps,

P2, ..., Pp), P;i is the probability of picking an individual
belonging to species i. The occurrence probability of species
interaction between two individuals of species i and j follows a
Bernoulli law of parameter ;. The probabilistic species
network is a weighted network G, in which there are node V;
(representing species i) and V; (representing species j), with
relative abundance p; and p; as well as the weight (7;) of the
link (V;, V). The probability of picking a link that connects
(correlated) two individuals belonging to species i and j
respectively, should be: L; = mp;p;.

Ohlmann etal. (2019) further proposed the concept of
image network, a scheme to classify mesoscopic network of
different species aggregation levels: Assuming that there are
N species groups (Cy, Cy, ..., Cy) from the previously defined
probabilistic species network G (N<n), where n is the number
of species in G. Obviously, when N=n, then both image
network and species network are the same, i.e., each species
is designated as a group. Also, obviously, when N=1, the
image network becomes the macroscopic network which has
single node, single link, and a connectedness value as
mentioned previously. When 7<N<n, the image network has N
species groups, and the image network is said to have a scale
of S=N/n, which is further elaborated below.

With the image network, a new set of nodes is v=(v;,... V).
The relative abundances of v; (or group i) can be computed
as:

=Y b (1)
keG;

The occurrence probability of interaction, or link probability,
between individuals from group C;and C;is:

ZkeC,,keCj Tk PkPk

Zkec, Pk Zkec, Pk

mj (2)
The link abundances between individuals of group i and j
are defined as:

L= Z Tk PkPx (3)

keC;,keG;

which is the probability of picking a link that connects two
individuals from group i and j, the counterpart of L; at species
level (the species probabilistic network).

Based on the above definitions, and the definition of Hill
numbers (Chao et al., 2012, 2014b; Hill, 1973; Rényi, 1961),
Ohlmann et al. (2019) introduced the following three types of
network diversity (ND). In the following three definitions, q is
the diversity order of Hill numbers and was also given a new
name of “viewpoint parameter” linked to the weight assigned
to dominant species vs. rare species onto assemble rules
(Chalmandrier et al., 2015).

The network diversity of species abundances (NDSA) is
defined as:

D)= (X p) )

The network diversity of link probabilities (NDLP) is defined
as:

qD(n):( i (%)q)q (5)

where
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The network diversity of link abundances (NDLA) is defined

as:
Nfp 9\
a = A
D(L)-( > (C)) (6)
1<i,jsN
where
N
C= Z Tipip;
1<i,jsN

The difference between NDLP (eqn. 5) and NDLA (eqn. 6),
as mentioned previously, is that the former is not weighted by
node abundance and assumes that the node abundances are
evenly distributed, and the latter is weighted by node
abundances. Their primary commonality is that both NDLP
and NDLA are based on link probabilities.

Ohlmann etal. (2019) defined the scale of the image
network as: S=N/n. If S =1, the network is considered to be at
microscopic scale, or species level image network. If S=1/n,
the network is considered to be at macroscopic scale. If
1/n<S<1, the network is considered to be at mesoscopic
scale. In this study, we adopt the microscopic or original
species-scale network, built with SparCC correlations
(Friedman & Alm, 2012).

In summary, Ohlmann et al. (2019) network diversity has
three metrics as defined by eqns. (4-6), network diversity of
relative species abundances (NDSA) (i.e., diversity of nodes,
eqgn. 4), network diversity of link probabilities (NDLP) (i.e.,
diversity of link probabilities, eqn. 5), and network diversity of
link abundances (NDLA) (i.e., diversity of nodes-links, eqn. 6).
In our opinion, the most informative network diversity metric is
the last one —the NDLA since it synthesizes the diversity
information of both nodes and links on the network, while the
other two NDs only quantify the diversity information of either
nodes or links.

RESULTS

Building microbial co-occurrence networks for AGM
datasets

Since the AGM datasets, with its 4 903 microbial samples
covering 318 animal species from four major invertebrate
classes and all six vertebrate classes, are so extensive that
building microbial networks for all species or all taxa will be
too computationally intensive, we selectively build 17 microbial
networks to compute the network diversity. Specifically, at
animal host species level, we randomly chose two animal
species, i.e., Apis mellifera and Bos taurus to construct their
gut microbial networks. At animal host class level, we built
their microbial networks for all 10 animal classes, one for each
class. At animal phylum level, we built two networks, one for
invertebrates and another for vertebrates. Finally, we built
three microbial networks for three diet types (carnivores,
herbivores, and omnivores), respectively.

To build the 17 microbial networks for selected 17 animal
taxa/diet types, we first compute the SparCC correlation
coefficients with FDR control of P=0.05 from the OTU tables of
the AGM datasets. The SparCC correlation coefficients are
advantageous over commonly used Pearson and Spearman
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correlation coefficients because it overcomes their issues in
processing compositional (abundance) data, but the
computational load of SparCC is far heavier (about 1 000
times more) than that of Pearson or Spearman methods,
which explains why we selectively built 17 networks, rather
than for all possible animal species or taxa.

We further compare the network diversity of different
taxa/diet-types by performing randomization (permutation)
tests with 1 000 times of re-sampling and P-value
threshold=0.05. This means that, for each comparison of both
taxa or diet-types, 1 000 pairs of SparCC networks must be
built for the two taxa or diet types (out of the previously
counted 17 networks), rather than only two networks. A total of
9 000 microbial networks with SparCC correlation algorithm
were constructed in this study to perform the permutation
tests. Figure 2 illustrates the microbial network for the class of
Amphibia to get a general glimpse of the networks built in this
study.

Computing the network diversities for microbial co-
occurrence networks of AGMs datasets

We computed Ohlmann’s network diversity (OND) for the
AGM microbial networks of the 17 taxa/diet- types hosts.
Since there are two types of correlations (links), positive and
negative, there can be three different ways to compute OND
for each network. That is, computing the OND for positive
links, negative links, and total links (using the absolute values
of SparCC correlation coefficients).

Table 1 below exhibits the results of the OND for the total
links, and Supplementary Table S1 in the online
supplementary information (OSI) exhibits the corresponding
results of the permutation tests for comparing the OND of
different taxa/diet types. Supplementary Tables S2, S3 and
Tables S4, S5 in the OSI exhibited the results of the OND and
corresponding permutation tests for positive and negative
links, respectively.

Comparing the OND results of total links, positive links and
negative links, we realize that separating the positive and
negative links did not introduce tangible benefits other than
the additional computational complexity. For this, we focus on
the results of the total links by using absolute values of
SparCC correlation coefficients (Table 1), and we do not
recommend the separate treatments for general purpose
study of biodiversity on networks.

As shown in Table 1, the first metric of network diversity,
namely network species (node) diversity, computed as the Hill
numbers of species relative abundances, is essentially the
same as traditional species diversity in community ecology,
except that the species are conceptually called network
nodes. Obviously, in the case of network species diversity,
links (correlations) do not weigh in. The second metric of
network diversity, namely network link diversity, computed as
the Hill numbers of the link probability, is essentially the
diversity of links in the network, and the species abundances
do not weigh in here. The third, namely the network diversity
of abundance-weighted links or simply “network abundance-
link diversity” for short is obviously the most comprehensive
network diversity metric among all three OND indexes, and
both species abundances and links (correlations) weigh in for
its definition. For this, we consider the third metric of network
diversity of abundance-weighted links (the last four columns in
Table 1 and Supplementary Tables S1-S5) as the most
representative. Figures 3-5 illustrate the three types of



Figure 2 Microbial species cooccurrence networks of Amphibia class, built with SparCC correlation coefficients (with FDR control of P-

value=0.05)

Green links and red links represent positive and negative correlations, respectively; the line thickness represents for the level of correlations, and
circle (network node) size represents the level of connectedness (=network degree/abundance).

network diversity explained above for the 17 taxa/diet-types,
using all links in the AGM networks (without distinguishing the
positive and negative links).

Supplementary Tables S1, S3, and S5 showed the results
(P-values) of the permutation tests from comparing the ONDs
of commensurable taxa/diet types. It turned out that none of
the compared taxa/diet-types exhibited significant differences
in their network diversity. In our opinion, the network diversity,
especially the network diversity of abundance-weighted links
is essentially a measure of network “heterogeneity” as further
discussed below.

CONCLUSIONS

The primary objective of this article is to systematically
analyze the microbial network diversity with extensive 4 903
AGM (animal gastrointestinal microbiome) samples covering
four major invertebrate classes and all six vertebrate classes,
as well as three major diet types. We first selectively
constructed 17 microbial co-occurrence networks with SparCC
correlation algorithm, as the implementations for Ohlmann
etal. (2019) probabilistic network model. The 17 microbial
networks span species (2 representative species), class (10
classes), phylum (invertebrate and vertebrate), diet types
(carnivores, herbivores, and omnivores). For each of the 17
microbial cooccurrence networks, we computed their network
diversities in terms of Ohlmann et al. (2019) three metrics. We
separately computed the network diversity for positive,
negative and total network links, but found that the separate

treatments have little benefits and using total links (or absolute
values of SparCC correlation coefficients) is both simple and
sufficient for measuring network biodiversity. These results, for
the first time, sketched out the animal microbial diversity of
biotic interactions across animal species, class, phylum scales

from  host perspective, and across community,
metacommunity and landscape scales from microbial
perspective.

A secondary objective of this article has something to do
with the two realities in the field of measuring biodiversity: (i)
The rediscovery of Hill numbers approximately a decade ago
offers a unified approach to measuring biodiversity, and the
unification establishes a “convertible common currency” or
gold standard by default. However, the Hill numbers have not
been widely used by practitioners, perhaps due to the
interpretations of the Hill numbers are still not sufficiently
clear. Recall, it took scientists of biodiversity research near
four decades to correctly decode Hill (1973) message, and in
fact, the field of biodiversity measure requires deep
mathematical foundation and is deceivingly simple. (ii) While
Hill numbers resolved the four major issues associated with
measuring diversity, as outlined in the introduction section, the
Hill numbers per se in terms of species abundances cannot
measure species interactions. This inability requires porting
the Hill numbers on ecological networks, but this topic is still in
its infancy and there are only a handful of studies (Bersier
etal.,, 2002; Luna et al., 2020; Ohlmann et al., 2019; Poisot
etal., 2012b, 2016). In consider of these realities, we
presented reviews on the key literatures on measuring
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Table 1 The three metrics of network diversity, all measured in Hill numbers of different diversity orders (g=0, 1, 2, 3) of AGM (animal

gastrointestinal microbiome) networks of all links, built with SparCC correlation coefficients (FDR (False Discovery Rate) control of P-

value=0.05)
NDSA (network diversity in NDLP (network diversity in link probabilities): :ﬁiﬁéﬂiﬁ?ﬁfﬂ:ﬁﬂfﬁ witl;wanecies
Taxon species (or group) apundances): computed with adjacent matrix (i.e., matrix of (group) abundance-weighted adjacent
Taxon computed with species (group) . L L . .
level relative abundance D(p) correlation coefficients) D(rr) rg(aLt)nx (i.e., matrix of link abundances)
q=0 g=1 q=2 q=3 g=0 g=1 q=2 q=3 q=0 g=1 q=2 g=3
Species Apis mellifera 218 7441 46.36 35.81 5427 4519.36  3437.32  2585.82 5427 235.02 81.77 54.90
Bos taurus 1362 714.48 278.11 140.78 301000 284275.50 266705.76 249073.1 301000 50280.13 6583.18 2198.32
Class Chromadorea 894 105.05 42.29 27.78 53722 46703.49 38876.75 31821.13 53722 885.81 184.09 89.91
Arachnida 412 63.22 3825 29.96 3667 3406.86 3090.41  2744.53 3667 74.06 25.65 16.63
Malacostraca 576 39.40 14.83 10.67 37106 35836.17 34569.37 33312.37 37106 364.07 7047 37.05
Insecta 1140 127.82 33.13 20.59 40072 32730.32 26323.38 21159.26 40072 576.99 64.52 33.19
Chondrichthyes 475 38.33 9.73 6.05 15655 15036.55 14419.30 13822.17 15655 300.45 66.60 37.72
Actinopteri 1186  291.88 110.06 64.21 148809  115001.15 82478.72 60653.24 148809 6468.19 1189.99 585.70
Amphibia 408 129.39 46.08 28.20 15968 15549.59 15136.68 14734.27 15968 1678.04 336.89 161.11
Sauropsida 1689  425.34 127.09 69.04 222130 201525.25 179310.77 157683.7 222130  9890.82 1247.97 559.67
Aves 1811  397.57 137.03 86.43 133688  115577.97 96241.29 78322.05 133688 3578.11 689.80 350.41
Mammalia 4245  1157.71 299.76 166.03 228601 189925.94 156655.69 131124.0 228601 13343.53 1510.62 585.38
Phylum Invertebrates 1565 249.85 68.49 38.97 51781 42382.64 34328.43 27887.94 51781 1409.42 129.21 56.31
Vertebrates 3378  1269.24 475.36 274.46 143030  104040.89 74225.48 55291.42 143030 10938.46 1173.95 440.00
B';;S Carnivore 2311 813.18 31547 189.97 197864  146148.64 101829.03 74379.82 197864 8917.03 1318.69 583.28
Herbivore 2390 354.60 81.30 45.11 96952 79281.92 64221.70 52273.98 96952 2399.03 388.10 196.51
Omnivore 3201  922.23 255.16 119.74 161060  132017.77 107003.60 87555.73 161060 7306.79 269.03 91.73
Mean (SE) 1603.59 421.98 139.91 79.64 109207.76 91997.65 76403.16 64377.91 109207.76 6979.17 901.8 357.52
(283.74) (98.06) (32.78) (18.15) (22155.09) (19453.08) (17271.93) (15601.85) (22155.09) (2904.78) (377.54) (127.28)
Range (min, max) (218, (38.33, (9.73, (6.05, (3667, (3406.86, (3090.41, (2585.82, (3667, (74.06, (25.65, (16.63,
4245) 1269.24) 475.36) 274.46) 301000)  284275.5) 266705.76) 249073.1) 301000) 50280.13) 6583.18) 2198.32)

biodiversity with slightly more details than usually presented in
a research article, which can be considered as a secondary
objective of this article —hoping to generate some tutorial
effect.

DISCUSSION

Measuring microbial diversity on networks or network diversity
is still an emerging research topic, and to the best of our
knowledge, this article should be the first comprehensive
estimation of the network diversity of animal microbiomes with
extensive metagenomic samples. Still, our study is at the
stage of estimating the network diversity, and a consequence
of such an exploratory study is that the implications
(significance) of our results are not self-evident. That is, the
significance requires future studies. For this, we can only
speculate the implications of our results. In the remainder of
this article, we suggest three types of possible implications
from our study, including (i) dynamics (including extinctions) of
species interactions may possess importance significance in
conservation  biology and agriculture (e.g., crop
pollinations)—both rare species and rare interactions matter;
(i) network diversity may be helpful for resolving previously
mentioned Simpson’s paradox; (i) network diversity and
ecological heterogeneity.

A general consensus is that dominant and more abundant
species interact more than less abundant and rare species
(Dee etal., 2019; Luna et al., 2020), and our AGM datasets
support this consensus in a pre-experiment data analysis (in
which there is a statistically significant positive correlation
between network node degrees and node abundances). The
dominant and abundant species are assumed to play more
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important roles in maintaining ecosystem functions than rare
species and their interactions (Luna et al., 2020). As argued
by Luna et al. (2020), since majority of species are rare and
are often specialists, determining how the rare species interact
with common/dominant species and with other rare species
may help to broaden our understanding of community
structure and dynamics. Endangered species are not only rare
in abundances, but also, usually, rare in species interactions.
As Daniel Jansen once warned: “ What escapes the eye,
however, is a much more insidious kind of extinction: the
extinction of ecological interactions” (Janzen, 1974; cited by
Luna et al., 2020). In crop-pollinator mutualism networks, the
breakup of the links may jeopardize the crop flowering and
influence crop production (Luna et al., 2020). The suppression
of biological invasions in agriculture and forestry by foreign
species should obviously pay attention to the establishment of
new links (interactions) with native species.

Next, we revisit the previously mentioned Simpson’s
paradox, which has various aliases such as association
paradox, Yule-Simpson effect in statistics. Simpson’s paradox
refers to a logical contradiction that may occur when the
marginal association between two categorical variables is
qualitatively different (e.g., the opposite trend or relationship)
from the partial association between the same two variable
when a third associated, but previously unobserved or
controlled variable, is introduced (Carlson, 2023). Simpson’s
paradox was often illustrated with a simple example of sex
bias during the graduate student admission. Inspired by the
example of graduate admission (Carlson, 2023) and a recently
debated preprint on the relationship between COVID-19
mortality and the consumption of vegetable kinds (Fonseca
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Figure 3 The network species (node) diversity measured in Hill numbers at diversity orders (g=0, 1, 2, 3), computed with relative species

(node) abundances on SparCC species cooccurrence networks of all links

etal., 2020), here, we contrive a fictious scenario with the
association between COVID-19 severity and the usage of
probiotics. For example, one may try to test a hypothesis that
probiotics may strengthen one’s immune system by maintain a
healthy gut microbiome, and consequently could lower the
mortality of COVID patients. It is possible to find a negative
correlation between probiotics usages and mortality rates.
However, if the researcher forgot to control the nutrition of the
participants. For example, it might be the case that the group
with probiotics may have better appetite than the control
group, and if the difference in food intake is significant, then a
data reanalysis by regrouping in terms of the level of food
intake, the previously observed probiotics-mortality
relationship may become statistically insignificant or even
reversed. In other words, the confounding effects of food
intake, as a third variable, may create a paradox with previous
trend when it is ignored. In this case, it is hard to distinguish
the effects of probiotics with better nursing care, possibly with
a better chef. Perhaps, it is for similar reason, the previously
mentioned study on the COVID-19 mortality and consumption
kinds of vegetables in different European countries had
received extensive attention among ecologists, given that the
authors started their paper with: “Many foods have an
antioxidant activity, and nutrition may mitigate COVID-19. To
test the potential role of vegetables in COVID-19 mortality in
Europe, we performed an ecological study” (Fonseca et al.,
2020). We are not in a position to cast support or doubt to
their study. It is the wide discussion on their study in social
media (the paper was twitted more than 2 000 times within a

Zoological Research: Diversity and Conservation 1(1): 51-65, 2024

few months) that prompted us to make our own fictitious
example for explaining the fallacy that does not seem to be
uncommon.

As mentioned previously, Simpson’s paradox may happen
in the inferences of species correlation coefficients, if
traditional Pearson or Spearman correlation coefficients were
used. For this reason, we adopted Friedman & Alm (2012)
SparCC correlations. Simpson’s paradox can also occur with
the simplest diversity index—species richness (as reveled by
Scheiner etal., (2000)). Another ecological scenario that
Simpson’s paradox could occur can be the studies of species
interactions when indirect effects are ignored. Obviously
pairwise species interactions are simplified views, and indirect
effects among species interactions are likely to be ubiquitous.
In a still simplified view of three species system, consisting of
donor, transmitter and receiver, the donor's effect is
transmitted to the received indirectly through the transmitter.
The indirect effects may act through so-called “interaction
chain indirect effect”, in which a species indirectly affect others
by influencing the abundance of an intermediate transmitter
species. Alternatively, the indirect effects may act through so-
called “interaction modification indirect effect”, in which the
donor species alters the per capita effect of the intermediate
transmitter species on the receiver species, but without
changing the abundance of transmitter species (Morin, 1999).
These indirect effects may generate so-terms apparent
competition, consumptive competition, indirect mutualism,
indirect commensalism, keystone predation, trophic cascade,
etc. (Morin, 1999). Determining indirect effects per se itself is

61



3e+05
2e+05
22e+05 =
3 3
[} ©
a a
= [
o o
¥ %
T 1e+05 £ 16405 I I I
i I ] I mlm I — I I Ialls I
2 0 (@2 e 08 538 (05 A 1@ (@ @ e 2P (@2 02 o0 02 (122 5\ 0P R (18 AN 1% (oZ (0@ 58P 5
éo‘@\“’o%ew \\\sp\@\q\\x\w (@ do‘\o\xc_,e\x\\& x\\ep«\\q\q\\x (@
vao“‘ N\;\ao o SR N“ RN o‘“‘\“ﬂv o o ng\ao PO N“ REIRES AN o“‘“«\\f’ o
q=0 g=1
250000
200000
2e+05
£ 2
= S 150000
< [
Qo Qo
[< [
o o
Aé 16405 E 100000
- -
I I I I I - I I I I I I
. 1_0n.l. N | Ins ]
o2 o\?‘ 5 5 5@ 32 (@© A O 0% 01 3% 1e° (@ o2 0\3 02 5215 132 (o8 W 0@ X8 X 582 3e®
éo“\(\sxxg\\\q \eps@% O OB (P do‘\o\\g\ Q) \5»@6 \\\q (@
) VN NS « <O “@0 TSNS SNXON (O O e
C(\‘o“‘ P\‘q@@o O SN P‘% WY e \>\Q' O‘(\ e 0“‘0«\ p%\ 0\00 N P~\\ p&‘é NI AN \)\ od‘ R
q=2 =3

Figure 4 The network link diversity measured in Hill numbers at diversity orders (g=0, 1, 2, 3), computed with the link probability on

SparCC species cooccurrence networks of all links

hardly possible without well designed experimental studies,
not to mention of detection of potential Simpson’s paradox in
data analysis. On the positive side, the unified approaches
such as Ohlmann etal. (2019) network diversity framework
with the Hill numbers, supported by SparCC correlation
algorithms, is likely to lower the risk of falling in the trap of the
paradox, thanks to their rigorous schemes used to aggregate
species, constructing subnetworks, and computing interaction
probabilities. Of course, we do not claim that these
approaches can eliminate the risks of Simpson’s paradox,
which ultimately depends on properly designed experiments
for data collection.

If we recognized a fundamental different between network
diversity such as Ohlmann et al. (2019) and Luna et al. (2020)
with traditional biodiversity is the inclusion of species
interactions with network diversity, then network diversity
actually reaches out to another fundamental concept in
ecology, i.e., the ecological heterogeneity. One may argue
that heterogeneity and evenness (a major aspect of diversity,
and the other is species richness) can be considered both
sides of same coin since literally heterogeneity and
unevenness are close to be synonyms. Nevertheless, this
analogy highlighted their similarity but seemed to ignore their
difference. By pointing out this negligence, we do not mean to
criticize the notion, and in fact, we have made similar
analogies previously in our own publications (Ma,
2020a,2020b; Ma & Ellison, 2018, 2019). In our opinion,
except for a handful of exceptions, from academia through
societies to many cultures, diversity and heterogeneity are
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often not rigorously distinguished, if not used interchangeably.
One exception we are aware of distinguish diversity from
heterogeneity is Shavit et al. (2016) quotes of Robert Frost
(1916) “Two roads diverged in a wood, and | took the one less
traveled by, and that has made all the difference.” We concur
with them that heterogeneity has received relatively little
attention than diversity, especially in community ecology
where diversity research has occupied a center position for
long time. Another exception is a motto by Aaron Ellison “Zoos
are diversity, and natural ecosystems are heterogenous”
(personal communication, cited in Ma (2020a)). A fundamental
difference between heterogeneity and diversity identified by
Shavit & Ellison etal. (2016), is that heterogeneity must
consider interactions in a group context (group behavior),
while diversity is measured in numbers or relative abundances
(more strictly equivalent numbers with Hill numbers). From this
perspective, the network diversities in link probabilities or link
abundances, demonstrated in this study, actually measure
heterogeneity. It should be noted that the concept of
heterogeneity is not limited to ecology, and its usages are as
wide as diversity, if not more. In fact, in many fields, diversity
and heterogeneity are interwoven and sometimes crossly
measured. This recent monograph (Guajardo, 2023) that
mixes diversity and heterogeneity concepts and uses
Simpson’s diversity index to measure heterogeneity is an
example to demonstrate the enormous challenge to
distinguish the both.

Finally, with gratitude, we would like to mention certain
limitations of this study, which were prompted by anonymous
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Figure 5 The network diversity measured in Hill numbers at diversity orders (g=0, 1, 2, 3), computed with the abundance-weighted link

probability on SparCC species cooccurrence networks of all links

expert reviewers of this article. First, although we previously
claim that the diversity partition problem is largely solved in
traditional community ecology, and furthermore, Ohlmann
etal. (2019) also developed the diversity partition solution for
their network diversity indexes by distinguishing single (local)
network (alpha diversity) vs. meta-network (gamma diversity),
the diversity partition in a network setting is much more
complex than that in traditional community ecology. For
example, to build a network, usually multiple community
samples from same or different (local) communities must be
taken, which may involve meta-community if the samples are
taken from different communities. In the present study, our
measures of network diversity are limited to alpha diversity,
given that a single network is built for each taxa level.
Theoretically, with the AGM datasets and Ohlmann et al.
(2019) framework, it is possible to build hierarchical networks
corresponding to different taxa levels, with each subnetwork
corresponding to a taxa level. Then, it is possible to apply
Ohlmann et al. (2019) partition scheme for network diversity.
Second, in ecological networks, network specialization (or
interaction unevenness, see Luna et al. (2020)) quantifies the
degree of how specialized the interactions between species
are. As with network diversity, network specialization is a
multi-faceted concept and can be measured in different ways
(see an excellent review by Poisot etal. (2012a)). A
comparative study of network specialization with network
diversity would be a very interesting research topic. Third,
although we previously claim that the sampling problem in
conventional community ecology is largely solved, the

Zoological Research: Diversity and Conservation 1(1): 51-65, 2024

sampling problem also arises in networks when interaction
frequency data are used to measure network diversity. On this
issue, two important studies exist (Chacoff etal., 2012;
Jordano, 2016). Fourth, although we suggest previously that
SparCC algorithm (Friedman & Alm, 2012) is one of the most
appropriate algorithms for building species co-occurrence
network and is used in this study given its advantage in
processing compositional data, other alternative algorithms
can produce different results even for same datasets.
Currently there is not yet a consensus on possible standard
method for building ecological networks, and the issue is
obviously worthy of further investigations. Fifth, the approach
we implemented and demonstrated in this article can be
applied to other general animal microbiome datasets such as
Cui et al. (2019), Li & Ma (2019), Li et al. (2020), Xiong et al.
(2019), Zhang et al. (2019), Zhu et al. (2015). Further testing
with other animal microbiome datasets may be helpful not only
for testing the approach, but also for revealing biological
insights of those specific studies.
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