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ABSTRACT

Biodiversity  has become a terminology familiar  to  virtually
every  citizen  in  modern  societies.  It  is  said  that  ecology
studies  the  economy  of  nature,  and  economy  studies  the
ecology of humans; then measuring biodiversity should be
similar with measuring national wealth. Indeed, there have
been  many  parallels  between  ecology  and  economics,
actually  beyond  analogies.  For  example,  arguably  the
second  most  widely  used  biodiversity  metric,  Simpson
(1949)’s diversity index, is a function of familiar Gini-index
in economics. One of the biggest challenges has been the
high “diversity” of  diversity  indexes due to their  excessive
“speciation”—there  are  so  many  indexes,  similar  to  each
country’s  sovereign  currency—leaving  confused  diversity
practitioners  in  dilemma.  In  1973,  Hill  introduced  the
concept of “numbers equivalent”, which is based on Renyi
entropy  and  originated  in  economics,  but  possibly  due  to
his  abstruse  interpretation  of  the  concept,  his  message
was  not  widely  received  by  ecologists  until  nearly  four
decades later.  What Hill  suggested was similar  to link the
US  dollar  to  gold  at  the  rate  of  $35  per  ounce  under  the
Bretton  Woods  system.  The  Hill  numbers  now  are
considered  most  appropriate  biodiversity  metrics  system,
unifying  Shannon,  Simpson  and  other  diversity  indexes.
Here,  we  approach  to  another  paradigmatic
shift —measuring  biodiversity  on  ecological
networks —demonstrated  with  animal  gastrointestinal
microbiomes  representing  four  major  invertebrate  classes
and  all  six  vertebrate  classes.  The  network  diversity  can
reveal  the  diversity  of  species  interactions,  which  is  a
necessary step for understanding the spatial and temporal
structures  and  dynamics  of  biodiversity  across
environmental gradients.
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 INTRODUCTION

Biodiversity loss is one of the biggest challenges humans face
today and in foreseeable future. Measuring biodiversity, as the
foundation  for  dealing  with  biodiversity  loss,  seems  to  be
deceivingly simple. In retrospective, although started as early
as  1940s,  debates  and  confusions  regarding  the   “diversity”
(excessive  number)  of  diversity  indexes,  continued  until  the
beginning  of  the  21st  century,  which  left  the  practitioners  of
biodiversity  producing  hardly  comparable  diversity  numbers
across  literatures  or  regions.  For  example,  arguable  the  top
two  widely  used  diversity  indexes  (Shannon  entropy  and
Simpson  diversity  indexes)  can  be  said  to  measure  different
aspects  of  diversity  (Shannon  &  Weaver,  1949;  Simpson,
1949),  but  both  are  hardly  comparable  and  nor  convertible.
The rediscovery of Hill numbers during the last decade and so
has resolved the major issues, and opened a new chapter for
measuring  diversity,  but  it  is  still  not  widely  applied  by
practitioners.  In  last  few  years,  researchers  have  begun  to
address  another  issue  in  measuring  biodiversity —ignoring
species interactions—which requires a paradigmatic shift, i.e.,
measuring  biodiversity  on  ecological  networks.  The  primary
objective  of  this  study  is  to  port  Ohlmann’s  et al.  (2019)
network  diversity  framework  to  microbial  species  co-
occurrence  networks  of  animal  gastrointestinal  microbiomes
(with 4 903 samples of 318 animal species covering four major
invertebrates  and all  six  vertebrate  classes).  In  consideration
of the early debates on diversity indexes and emerging nature
of  network  diversity  research,  we  present  a  slightly  more
detailed  review  on  the  key  literatures  with  a  secondary
objective  to  offer  the  practitioners  a  tutorial  summary  on  the
latest advances in measuring biodiversity.
Measuring  biodiversity  is  of  obvious  importance  both

theoretically  and  practically.  Nearly  all  existing  measures
(metrics)  for  biodiversity  contain  two  key  elements:  one  is  
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variety  and  another  is  variability  of  the  variety  among  living
organisms  in  the  environment  (Chao  et al.,  2014b;  Gaston,
1996).  For  example,  species  richness,  arguably  the  simplest
diversity index, is simply the number of species (varieties) in a
community.  For  another  example,  with  more  sophisticated,
familiar Shannon entropy (D), the variety can be species, and
the  variability  can  be  the  abundance  of  each  species  or
species abundance (pi), i=1, 2, …S, where S is the number of
species, then the diversity measured with Shannon entropy is

.  It  can  be  said  that  Shannon  diversity  index
simply  synthesizes  the  two  components  of  diversity  with
Shannon entropy function. Shannon entropy is named after C.
E. Shannon, who is the founder of modern information theory,
but  Shannon never  studied biodiversity.  The entropy function
plays the role of computing the “uncertainty” (variability or lack
of  information)  about  species  identities  in  a  community  (Jost,
2006).  For  instance,  when  a  community  only  contains  one
species,  then  pi=1,  S=1,  and  D=0,  there  is  no  uncertainty
(variability)  in  the  community  when  one  randomly  picks  an
individual. When there are two species, each with 50% relative
abundance,  then  Shannon  entropy  D≈0.69.  In  contrast,
assuming  the  same  two  species,  but  one  species  with  80%
abundance and another  with  20% abundance,  then Shannon
entropy  D≈0.50.  This  example  illustrates  two  points:  (i)  the
species  richness  (R)  as  the  number  of  species  in  the
community,  R=2,  is  not  useful  in  distinguishing  the  two
communities with different species relative abundances ((50%,
50%) vs. (80%, 20%)) since two communities may have very
different  productivities;  (ii)  Shannon  entropy  measures  the
uncertainty,  which  is  equivalent  with  lack  of  information  or
unevenness  in  the  community,  and  turns  out  to  be  rather
useful  in  differing  the  two  community.  The  first  community  of
two species with (50%, 50%) relative species abundances has
higher evenness (uncertainty) than the second community that
also  has  two  species  but  with  uneven  species  abundance
distribution of (80%, 20%),  i.e., D1≈0.69>D2≈0.50. The higher
evenness  (higher  entropy)  means  that,  when  one  randomly
picks  an  individual,  it  is  more  difficult  to  correctly  guess  its
species  identify,  i.e.,  higher  uncertainty  or  less  informative
(low  level  of  information).  Therefore,  while  species  richness
(R) as a rough estimate of biodiversity can be useful in certain
occasions, Shannon entropy is obviously more appropriate in
measuring biodiversity.
One  would  wonder  why  Shannon  entropy,  which  was

designed  to  measures  the  information  associated  with  an
event  (more  strictly  information  associated  with  a  random
variable), was chosen to measure biodiversity. For example, a
convenient  choice  for  measuring  biodiversity  could  be
statistical  mean  (average)  of  species  abundances.  Still  with
the  previous  example  of  two  species  community,  if  the
average  is  used  to  measure  biodiversity,  then  both
communities  will  again  have  the  same  diversity  since
(20%+80%)/2=(50%+50%)/2=0.5.  In  this  case,  statistical
average  failed  to  distinguish  two  obviously  different
communities.  The  failure  has  to  do  with  the  statistical
distribution  of  species  abundance  frequency  (distribution),
which  almost  always  follows  highly  skewed  J-shaped
distributions  (e.g.,  lognormal,  power-law  distributions)  and
rarely  follows  symmetrical  Gaussian  distribution.  For  highly
skewed  distribution  such  as  lognormal  and  power  law
distributions,  statistical  mean  (average)  is  usually  a  poor
statistic.  For  power  law  distribution,  there  is  so-termed  no-
average  property,  which  means  that  the  average  of  the

distribution  cannot  represent  most  data  points  in  the
distribution.  Therefore,  ecologists  made  a  right  choice  for
measuring  biodiversity  by  selecting  Shannon  entropy  rather
than more familiar statistical average.
However,  Shannon  entropy  is  far  from  perfect,  ecologists

have  been  searching  for  better  diversity  measures  since  the
introduction  of  Shannon  entropy,  familiar  Simpson  index
(Simpson,  1949)  was  invented  almost  the  same  time  as
Shannon  entropy  index  (Shannon,  1948).  As  commented  in
Southwood  &  Henderson  (2000),   “ the  result  has  been  an
“explosive  speciation” of  diversity  indices,  which  initially
brought  confusion  to  the  subject;  in  addition,  the
ubiquitousness  of  some  relationships  and  the  apparent
constancy of certain numerical values have added a measure
of  mystique”.  Indeed,  for  quite  a  long  period,  the  debates  on
diversity  indexes  had  confused  practitioners  of  biodiversity
research and conservation, which prompted some scholars to
publish  consumer’s  guide  materials  (  e.g.,Smith  &  Wilson,
1996). Furthermore, reviews and monographs were written to
discuss deceivingly simple diversity indexes (e.g., MacArthur,
1965; Magurran,  2004; Southwood & Henderson,  2000).  The
core issue of these debates around diversity measures lied in
the  excessively  high   “diversity”  (of  diversity  indexes)  from
“explosive  speciation”  of  diversity  indices  characterized  by
Southwood & Henderson (2000). The excessive “diversity” of
diversity indexes implies high uncertainty—lack of consensus
on the appropriateness of different diversity indexes, and what
is  even worse is  that  the values of  different  diversity  indexes
are  hardly  comparable.  Using  an  analogy,  measuring
biodiversity is more like different countries (researchers) using
different  currencies  (diversity  indexes),  and  unlike  currency
exchanges, there was not a mechanism to convert the values
of different diversity indexes until recent years.

β = γ − α)
β = γ/α)

It should be mentioned that there are other issues regarding
diversity  measures,  most  notably,  the  definitions  of  beta-
diversity  and  gamma-diversity.  All  of  the  previous  discussion
on diversity indexes is, in default, about alpha diversity, which
is the diversity of a single community. Gamma diversity refers
to the total diversity of multiple (local) communities, equivalent
to the alpha-diversity  of  the metacommunity  consisting of  the
multiple  local  communities.  While  gamma  diversity  can  be
defined  and  measured  from  alpha-diversity  in  a  relatively
straightforward manner, defining and measuring beta-diversity
turn  out  to  be  rather  complex  and  have  been  a  hotspot  for
debates.  Beta-diversity  conceptually  refers  to  the  difference
between  (among)  two  (multiple)  communities.  Even  with  the
simplest case of two local communities, there are at least two
ways  to  define  beta-diversity:  additive  (   or
multiplicative  ( .  Intuitively,  both  schemes  are
reasonable  and  may  have  their  own  merits.  However,  the
results  from  two  schemes  can  be  different,  and  may  even
generate paradox. Since their definitions ultimately rely on the
adoption  of  basic  diversity  indexes  discussed  previously,  the
beta-diversity  definitions  inherit  the  previously  identified
issue—lack of  consensus due to lack of  comparability.  Using
an  analogy,  if   “alpha-diversity”  measures  the   “wealth
evenness  or  unevenness”  (diversity)  of  a  country,   “gamma-
diversity”  measures  the  wealth  evenness  of  the  world,  then
“beta-diversity”  can  be  defined  to  measure  the  difference
between  two  countries.  In  fact,  the  well-known  Gini-index,
which  measures  the  wealth  distribution  (evenness  or
unevenness) of a country, is a function of Simpson’s diversity
index in community ecology (Ma & Ellison, 2018). Obviously, a
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beta-diversity of Gini-index for comparing two countries can be
multiplicative or additive.  For example, country A’s Gini-index
is  twice  the  world  average  Gini-index  would  be  multiplicative
version,  and the difference between country A’s  Gini-index is
0.2 or (20%) would be additive version. The two numbers from
multiplicative  and  additive  definitions  per  se  are  not
comparable at all.
Ecology  can  be  considered  as  nature’s  economy  or

economy  of  plants  and  animals,  and  economy  can  be
considered  as  the  ecology  of  humans;  both  ecological
systems and economic systems consist of various production
and  consumption  systems in  the  form of  food  webs  (nature),
supply  chains  (human  industry),  driven  by  fundamental
processes  such  as  competitions,  cooperation,  symbiosis,
predation  (war)  etc.  Therefore,  measuring  biodiversity  in
ecology is  not  unlike measuring wealth in  human societies in
economics.  It  was  not  coincidental  that  Gini-index  in
economics  and  Simpson’s  diversity  index  in  ecology  can  be
derived  from  each  other.  In  fact,  Ma  &  Ellison  (2018,  2019)
dominance concept in ecology is applicable to both population
and  community  levels,  and  if  applied  to  economics,  then  it
means that one can define a Gini-index for a citizen, besides a
Gini-index  for  a  country.  The  underlying  mechanism  for  their
relationship  is  that  dominance  metrics,  Simpson’s  diversity
index,  and  Gini-index  possess  mathematical  functional
relationships (Ma & Ellison, 2018, 2019).
Beyond  the  previously  identified  two  issues  regarding

biodiversity  measures,  i.e.,  excessive  number  of  biodiversity
indexes  and  the  complexity  of  beta-diversity,  a  third  widely
known,  also  equally  serious  issue  with  the  previous  ones,  is
the  so-termed  sampling  problem  in  diversity  estimation.  The
issue  is  rooted  in  the  hard  reality  that  it  is  hardly  possible  to
survey the whole community and diversity must be estimated
from  finite  samples  taken  from  the  community  under
investigation.  Therefore,  errors  in  diversity  estimates  are
hardly  avoidable with finite  sampling efforts,  and the problem
is  simply  to  estimate  the  diversity  of   “population”  (sensu
statistics,  not  sensu  ecology)  from  the  diversity  of   “samples”
(sensu statistics, not ecology). In standard statistics, variance,
standard errors, and confidence intervals must be attached to
the  diversity  estimates,  but  this  practice  has  rarely  been
followed in diversity estimation. An even more serious part of
the  sampling  problem  is  rooted  in  the  previously  mentioned,
highly skewed distribution of species abundance distributions.
The  high-skewness  makes  it  extremely  costly  for  samples  to
fully  cover  low-abundance  (rare)  species,  especially  possibly
many singletons (species represented by single  individual)  in
a community. This also means that the diversity estimates are
usually  very  sensitive  to  samples  or  sampling  efforts,  and  it
can be rather difficult to know when sufficient sampling efforts
are made. To remedy the sampling problem, researchers have
developed  the  so-termed  rarefaction  estimation  approach  to
extrapolating  the  number  of  total  species  in  the  community,
but  the  rarefaction  itself  is  not  a  perfect  solution  either
because  it  depends  on  another  rather  complex
problem—Good’s  coverage  problem,  which  was  first  studied
by the founder of modern computer science, Alan Turing, who
studied  it  but  did  not  publish  it  and  later  published  by  I.  J.
Good  with  the  permission  from  Turing  (Good,  1953,  2000;
Good & Toulmin, 1956).
A  fourth  issue  in  measuring  biodiversity  is  to  do  with  the

scope of biodiversity. Fairly speaking, this issue is more to do
with the scope of biodiversity research and is far less technical

than the previously  discussed three types of  problems.  Much
of  biodiversity  research  has  been  focused  on  species
diversity,  especially  the  species  diversity  of  plants  and
animals, until the recent two decades when microbial diversity
receives  increasing  attention  thanks  to  the  revolutionary
metagenomic  sequencing  technologies  and  the  launch  of
Human  Microbiome  Project  (HMP)  and  Earth  Microbiome
Project  (EMP).  However,  biodiversity  should not  be limited to
the diversity of organisms per se for scientific, technological or
humanity  advances  (benefits).  Intuitively,  the  elements  of
biodiversity,  variety  and  variability  (uncertainty)  can  be
extended  from  organisms  per  se  to  any  of  their  associated
properties,  most  notably,  genes  (genome),  metagenomes,
functions,  phylogeny,  metabolic  functions,  etc.  (Chao  et al.,
2014b; Ma, 2018c, 2023; Ma & Ellison, 2021; Ma & Li,  2018;
Ma  et al.,  2020).  Therefore,  measuring  biodiversity,  as
foundation  for  community  ecology  and  as  practical  tools  for
biodiversity  conservation  has  far  broader  scope  (from  gene,
species,  functions,  etc.)  and  significant  implications
(conservation strategies, ecosystem services, global changes,
etc.).
The  four  issues  (problems)  mentioned  above  are  now

largely resolved thanks to the introduction (Hill, 1973), actually
the  re-introduction  (Jost  2007;  Chao  et al.,  2012,  2014b;
Ellison, 2010; Jost, 2010; Ma, 2018c), of a new metric system
for biodiversity, i.e., the Hill numbers (Hill, 1973). Hill numbers
are actually based on Rényi (1961) entropy. It can be said that
Renyi (1961) entropy is of more mathematical generality than
Shannon  (1948)  entropy,  and  therefore  has  achieved  wider
applications in many fields, including economics and quantum
computing. Hill (1973) formulated its application for measuring
biodiversity  inspired  by  its  success  in  economics,  where  the
concept  of   “numbers  equivalent  of  elements” was  originated.
According  to  Hill  (1973),  the  diversity  of  a  community  should
be  measured  with   “numbers  equivalent”  (i.e.,  namely,  Hill
numbers) —the  number  of  equally  likely  elements  (such  as
individuals  or  species)  necessary  to  generate  the  observed
diversity being measured by a diversity index. It might be this
scientifically  rigorousabstruse  Hill  numbers  in  ecology
scientifically  rigorous,  but  likely  too  abstruse  to  easily
comprehend  concept/statement  that  had  prevented  the  wide
adoption  of  Hill  numbers  in  ecology.  The  Hill  numbers  (Hill,
1973)  had  not  received  attention  it  deserves  until  nearly  four
decades  later  when  a  group  of  scholars  reintroduced  it  into
ecology.  It  is  estimated  that  during  the  last  decade  and  so,
more  than  a  dozen  core  methodological  papers  exclusively
devoted  to  the  Hill  numbers  and  its  applications  have  been
published  in  top-tiers  ecological  journals  such  as  Ecological
Monographs,  Ecology,  Ecology  Letters,  Annual  Review  of
Ecology  and  Systematics,  and  Methods  in  Ecology  and
Evolution.  Here,  using  less  rigorous,  analogical  terminology,
we further expose Hill (1973) concept of “numbers equivalent
of elements” as follows: Basically, he was saying that, I  have
discovered that using Renyi entropy, we can establish a gold
standard, in which all existing diversity indexes, possibly many
other  diversity  indexes  people  may  continue  to  propose  in
future, can be unified with my or Hill numbers. In other words,
the values of other diversity indexes can be converted with my
“gold standard” into a series of Hill numbers, for which I assign
a diversity order q=0, 1, 2, … Using an analogy of economics
again,  what  Hill  (1973)  wished  to  establish  was  not  unlike  to
link  the US dollar  to  gold  at  the rate  of  $35 per  ounce under
Bretton Woods system. Under the Bretton Woods system, US
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dollars  were  as  good  as  gold,  and  all  currencies  could  be
pegged  to  US  dollars,  equivalently  to  gold  (e.g.,Mason  &
Asher,  1973).  Similarly,  with  Hill  numbers,  all  other  diversity
metrics,  existing  ones  and  possibly  future  ones,  can  be
converted into Hill  numbers (Hill,  1973). With Hill  numbers as
“gold”  standard,  the  previously  identified  first  issue  as
criticized  by  Southwood  and  Henderson  (2000)  as  excessive
“diversity”  of  diversity  index,  i.e.,  the  lack  of  consensus  on
which  diversity  index  is  better,  is  a  moot  issue.  That  is,  Hill
numbers  are   “gold”  standard,  and  all  other  diversity  indexes
can be converted into one of  the Hill  numbers corresponding
to a diversity order (q). Chao et al. (2012) further clarified Hill
numbers  as,  where  S  is  the  number  of
species in the community, q=0, 1, 2, … is the diversity order,

  is  the  Hill  numbers  at  diversity  order  q.  When  diversity
order  q=0,  =S,  this  is  the  traditional  species  richness.
When  q=1,  ,  which  is  the
exponential  function  of  previously  defined  Shannon  entropy
(D),  hence,  Shannon  entropy  can  be  converted  into  the  Hill
number  at  the  1st  diversity  order  (q=1).  When  q=2,

,  which  is  the  reciprocal  of  Simpson  diversity
index, again convertible to the gold standard of Hill  numbers.
In  the  Hill  numbers  system,  different  diversity  indexes
(different  Hill  numbers  at  different  diversity  order  q)  actually
possess  more  intuitive  interpretations.  For  example,  when
q=0,  species  richness  means  that  every  species  is  treated
equally,  regardless of  their  abundances.  Using an analogy in
economics,  it  means  that  each  person,  regardless  of  their
wealth,  only  contribute  one  count  to  the  population  number.
When q=1, the Hill number (diversity) is the number of “typical
species” in the community where each species is weighted in
proportional to its abundance. In economics, this would mean
that  each  person  is  counted  in  proportional  to  his  or  her
wealth.  When  q=2,  the  Hill  number  is  weighted  in  favor  for
more  abundant  species.  In  economics,  this  would  mean  that
wealthy  people  get  more  weights,  and  poor  people  weigh  in
less and could be ignored. In other words, the Hill  number of
diversity  order  q=2,  is  more  suitable  for  measuring  the
diversity  of  dominant  species,  when  ignoring  rare  species  is
justified.  Not  coincidently,  the  Gini-index,  which  can  be
converted with Simpson’s index or D(2), is particularly suitable
for  revealing  the  effects  of  millionaires,  the  unevenness  of
wealth  distribution.  It  can  be  said  that  evenness  and
unevenness (approximate to dominance or heterogeneity) are
the both sides of same coin (Li & Reynolds, 1995; Ma, 2015,
2018a,  2018b,  2019a,  2019b,  2021c,  2022;  Ma  &  Ellison,
2018, 2019; Ma & Taylor, 2020 ).
It  was probably the above analyzed merits of Hill  numbers,

as  well  as  other  advantages  of  Hill  numbers,  a  few
consensuses  regarding  the  previously  identified  four  issued
have emerged during the last  decade.  The first  consensus is
that   “numbers  equivalent”,  i.e.,  the  Hill  numbers  is  the  most
appropriate for  measuring alpha diversity ( Chao et al.,  2012;
Chao et al., 2014b; Ellison, 2010; Ma et al, 2019). Second, the
multiplicative  version  (partition)  of  Hill  numbers  is  more
appropriate  than  additive  partition  for  deriving  beta-diversity
(Chao  et al.,  2012,  2014b).  Furthermore,  to  deal  with  the
sampling problem in measuring diversity (i.e., the third issue),
Chao  et al.  (2014a)  extended  rarefaction  approach  to  Hill
numbers (Chao & Jost, 2012, 2015; Chao et al., 2013, 2015a,
2015b).  In  addition,  to  measure  other  kinds  of  biodiversity
beyond  species  diversity  (the  fourth  issue  mentioned
previously),  the  Hill  numbers  for  phylogeny  (Chao  et al.,

2014b;  Chiu  et al.,  2014),  genes,  and  metagenomes  (Ma,
2018c,  2023;  Ma  &  Li,  2018;  Ma,  et al.,  2020)  have  been
developed and applied.
The previous  introduction  seems to  suggest  that  the  major

issues  in  measuring  diversity  have  been  resolved  during  the
first  decade  of  this  century.  It  turned  out  that  Hill  numbers,
while advantageous over virtually all existing diversity indexes,
still  cannot  deal  with  another  important  issue  in  community
ecology,  that  is  species  interactions.  Back  to  the  previous
examples  of  two  species  communities,  a  community  of  wolf
and bear  and a  community  of  wolf  and deer  would  be rather
different. In the community (habitat) of wolf and bear, both are
apex  predators  and  opportunistic  carnivores  and  their
relationship  is  largely  competitive,  but  usually  they  are  not
each other’s  prey.  On the  other  hand,  the  community  of  wolf
and deer, wolves may try to prey on as many as deer as they
can.  Traditional  diversity  indexes  do  not  consider  species
interactions and offer little insights for comparing the previous
two communities involving wolves. A solution to deal with such
an  issue  requires  a  paradigmatic  shift  in  measuring
biodiversity,  one  venue  is  to  move  biodiversity  concept  on
complex networks that captures species interactions. Defining
and  computing  network  diversity  or  moving  biodiversity
measures  on  to  species  interaction  networks  is  an  emerging
field  in  recent  years  (Eagle  et al  2010),  and  two  pioneering
studies  are  Ohlmann  et al.  (2019)  and  Luna  et al.  (2020).
However, both approaches did not offer universally applicable
approaches  for  building  species  interaction  networks.  The
objective of the present study is to innovatively apply Ohlmann
et al.  (2019)  approach  to  measure  the  microbial  diversity  on
AGM (animal  gastrointestinal  microbiome)  networks.  Besides
applying Ohlmann et al. (2019) definitions and procedures, we
first  construct  AGM  networks  with  SparCC  algorithms  and
further  developed  statistical  methods  for  comparing  the
network biodiversity. To the best of our knowledge, this study
should  be  the  first  attempt  to  measure  biodiversity  on
microbial  networks,  and we use big  datasets  including  4  903
AGM samples covering 319 animal species representing four
major  invertebrate  classes  and  all  six  vertebrate  classes,
collected  from  108  published  studies  on  animal  gut
gastrointestinal  microbiomes  (Ma,  2021a,  2021b;  Ma  et al.,
2022).

 MATERIALS AND METHODS

Figure  1  illustrates  the  study  design  and  computational
procedures  used  in  this  study.  The  computational  codes  we
developed  are  provided  in  the  online  supplementary
information.  Besides  using  our  own  codes,  Friedman  &  Alm
(2012) SparCC algorithm (https://bitbucket.org/yonatanf/sparcc)
(see  introduction  below)  is  used  to  build  complex  networks.
Specifically,  we  use  their  C++  version  of  SparCC,  named
FastSpar  (https://github.com/scwatts/FastSpar),  which  uses
the same algorithm as SparCC but runs much faster.

 The AGM (Animal Gastrointestinal Microbiome) dataset
We  surveyed  108  publications  of  animal  gastrointestinal
microbiomes (AGM) and collected 6 900 AGM samples using
16S-rRNA  metagenomic  sequencing  technology.  Enforcing
quality  control  eliminated 1 997 samples and left  4 903 AGM
samples  spanning  all  three  major  animal  phyla  (i.e.,
Nematoda, Arthropoda, and Chordates), and ten major animal
classes  (including  four  major  invertebrates  and  all  six
vertebrates),  59  orders,  142  families,  261  genera,  and  318
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species.  The  ten  animal  classes  covered  by  the  4  903
samples  are:  Chromadorea,  Arachnida,  Malacostraca,
Insecta,  Chondrichthyes,  Actinopteri,  Amphibia,  Sauropsida,
Aves, and Mammalia. Insects (76 species) and mammals (123
species)  represented  for  the  largest  proportions  of  host
species,  and  contributed  979  and  1  499  AGM  samples,
respectively.  Both  the  classes  occupy  62.6% of  host  species
and 51% of  AGM samples.  These same datasets  have been
analyzed in our previous studies (Ma, 2020a, 2020b; Ma et al.,
2022)  with  different  research  objectives  from  this  study,  and
detailed information about  these AGM samples can be found
in the Supplementary Table S7 of Ma et al. (2022).
We  further  categorize  the  4  903  AGM  samples  into  three

diet types, including 1 421 carnivores, 1 229 herbivores, and 1
473 omnivores groups, respectively. The remaining 780 AGM
samples could not be categorized into any of the three major
diet types and were excluded in the diet-type related modeling
(but still included in regular host taxon-based analysis).
Besides  enforcing  the  previously  mentioned  quality  control

(details outlined in Ma et al., 2022) that removed 1 997 (29%)
AGM samples,  we  recomputed  the  OTU tables  from the  raw
16S-rRNA reads  using  QIIME-2  software  (v.2018.6.0,  Boylen
et al.,  2019.  The  OTUs  from  QIIME2  are  species  because  it

uses  the  machine  learning  algorithm  to  cluster  the  reads  of
100%  similarity  as  an  OTU,  and  the  clustered  OTU  is  then
aligned to a taxon (species in our re-computation) against the
Greengenes  database.  A  total  of  473  359  bacterial  species
were  obtained  from  the  recalculation  of  the  4  903  AGM
samples.

 Network  diversity:  measuring  biodiversity  on  complex
ecological networks
One motivation to measure biodiversity  on complex networks
is  the  previous  introduced  examples  of  two  different
communities  (in  the  introduction  section):  community  of  (wolf
and  deer)  vs.  community  of  (wolf  and  bear).  The  species
relationships  (interactions)  in  both  communities  are  obviously
different.  In  the  first  community,  wolfs  may  eat  up  deer
population,  and the community  diversity  in  terms of  Shannon
evenness entropy may approach to zero. While in the second
community,  wolfs  and  bears  may  reach  some  kind  of
equilibriums and the community diversity is unlikely to be zero.
In  classic  community  ecology,  species  interactions  are
typically modelled with differential equations, known as Lotka-
Volterra  equations,  pioneered  by  Alfred  Lotka  and  Vito
Volterra,  most  time actually  independently  (e.g., Lotka,  1925;

 

Figure 1  A Diagram showing the study design and computational procrdures of this study
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Volterra,  1931).  Lotka-Volterra  equations  started  with  two-
species  interactions,  and  they  can  be  extended  to N-species
interactions  with  differential  equation  system  of N-equations.
In  fact,  Lotka-Volterra  equations  have  been  the  primary
approach  to  investigate  ecological  community  (Kingsland,
1995;  May,  1973),  in  particular,  species  interactions  in  the
settings of food webs, and the approach can be harnessed to
investigate different species interactions including competition,
predation,  symbiosis,  commensalism  as  well  as  their
implications effects onto community  stability  (e.g.,  whether  or
not  wolfs  will  extinguish  deer  populations).  However,  the
approach has certain limitations. First, the analytical solutions
are  generally  too  complex  to  be  tractable  even  for
communities  of  moderate  number  of  species,  and  computer
simulations must be used. Second, parameterization of large-
scale differential equations systems with experimental data of
plants  and  animals  are  usually  practically  infeasible.
Metagenomic technologies, which makes it  possible to obtain
the species abundance data of microbial community samples,
within  days if  not  hours,  offer  unprecedented opportunities  to
parameterize  large-scale  model  systems  for  microbial
communities.  In  the  meantime,  the  advances  in  complex
network science have made the option of using Lotka-Volterra
differential  equation  systems  less  attractive  because  the
network  approach  is  not  only  simpler  but  also  produce
excellent  visualization  of  species  interaction  patterns.  The
network graphs with nodes representing for species and links
(edges)  representing  for  their  interactions,  are  much  more
intuitive to most ecologists than phase portraits generated by
Lotka-Volterra differential equations.
There have been extensive studies on ecological  networks

during  the  last  few  decades;  however,  to  the  best  of  our
knowledge,  we  are  only  aware  of  a  handful  of  studies  that
formally  defined  biodiversity  on  ecological  networks  (e.g.,
including:  Bersier  et al.,  2002;  Poisot  et al.,  2012a,  2016;
Ohlmann et al., 2019; Luna et al., 2020). Here, we focused on
the  latest  two  studies.  As  a  side  note,  there  were  earlier
studies  on  network  diversity,  notably  Rafols  &  Meyer  (2010);
Stirling (2007), which compute the diversity of network nodes,
but often ignore the nodes interactions or lack comprehensive
synthesis  of  node  and  link  information  as  performed  by  the
latest studies on network diversity mentioned previously (e.g.,
Ohlmann et al., 2019).
Ohlmann  et al.  (2019)  proposed  a  generic  model  for

ecological  networks  by  extending  the  probabilistic  network
model  by  Poisot  et al.  (  2016).  The  probabilistic  network
model,  while  theoretically  solid  as  model  of  ecological
networks, in our opinion, seems to be unnecessarily complex
for  the  purpose  of  this  study  given  that  the  extensive  AGM
datasets  allow  us  to  build  realistic  microbial  species  co-
occurrence  networks  (SCN).  Furthermore,  we  argue  that  the
SCNs we are to build with SparCC correlation coefficients, are
essentially  an  empirical  implementation  of  their  probabilistic
network  model,  implemented  with  metagenomic  species
abundance distribution (SAD) data. With these considerations,
we  adopt  Ohlmann  et al.  (2019)  definitions  for  network
diversity, but not their approach to building microbial networks
for the AGM datasets. In Luna et al.  (2020) study on network
diversity,  they defined network  diversity  mostly  in  the context
of  trophic  food  webs,  and  they  did  not  offer  approach  to
building  complex  ecological  networks  with  large-scale
metagenomic  datasets.  In  consideration  that  they  did  not
adopt Hill numbers, given the advantages of Hill numbers, we

skip  their  definitions  of  network  diversity  in  this  study.  An
advantage  of  Luna  et al.  (2020)  paper  is  that  they  presented
insightful  discussion  on  network  diversity,  especially  their
implications  to  community  ecology  and  biogeography,  from
which  we  draw  excellent  insights  in  our  discussion  section.
Below, we outline the procedures to build the microbial  SCN,
and in the next subsection, we summarize the definitions and
procedures  for  computing  the  network  diversity  for  the  SCNs
built with the AGM datasets.
To build  species co-occurrence network,  the first  step is  to

select  an  algorithm  for  computing  species  correlation
coefficients,  i.e.,  using  correlation  relationships  to  reveal
cooccurrence relationships. We choose the SparCC algorithm
developed  by  Friedman  &  Alm  (2012)  (https://bitbucket.org/
yonatanf/sparcc),  rather  than  using  more  traditional  Pearson
correlation  coefficient  and  Spearman  rank  correlation
coefficient,  because  it  alleviates  a  fundamental  issue
associated  with  compositional  species  abundance  data.  The
issue is that, with compositional data (Aitchison, 2003), many
standard  methods  for  estimating  correlation  coefficients
including  Pearson  and  Spearman  correlations  are  biased
since  the  relative  abundances  must  be  summed  to  100%
(Friedman  &  Alm,  2012).  This  constraint  makes  the  relative
abundances  not  independent,  tending  to  be  negatively
correlated,  regardless  of  the  true  correlations  (Friedman  &
Alm,  2012).  Theoretically,  the  true  correlations  can  be
accurately  determined  by  absolute  abundances,  but  the  true
absolute  abundances  are  not  available  in  metagenomic
sequencing  data.  There  is  a  C++ version  of  SparCC,  named
FastSpar  (https://github.com/scwatts/FastSpar),  which  uses
the  same  algorithm  as  SparCC  but  much  faster.  During  the
computation,  to  minimize  the  spurious  effects  of  extremely
rare OTUs, we filter  out the extremely rare OTUs that occurs
in  less  than or  equal  to  2% of  the  AGM samples  for  building
the networks in this study.
In  our  opinion,  an  observation  on  SparCC  algorithm  is

worthy  of  notice.  The  compositional  effects  Friedman  &  Alm
(2012)  aimed  to  alleviate  with  their  SparCC  algorithm  is
related to a suit of logical inference fallacies in statistics often
under  different  names,  most  notably,  association  paradoxes,
Simpson’s  paradox,  aggregation,  amalgamation,  or  reversal
paradoxes (Bradford et al., 2014a, 2014b; Carlson, 2023). The
problem was already noted by Pearson (Pearson, 1897, cited
in Friedman &  Alm,  2012),  but  obviously  still  needs  attention
today.  Although  statistician  Edward  Simpson’s  name  was
used, he only pointed out that the association paradoxes were
widely known before his classic 1951 paper (Simpson, 1951),
and obviously  he never  made the claim for  the discovery.  Of
course,  he  did  claim  his  Simpson’s  diversity  index,  which  he
published  two  years  earlier  (Simpson,  1949)  and  is  arguably
considered  as  the  second  most  widely  used  diversity  index,
perhaps  only  after  Shannon  entropy  (Shannon,  1948).  Even
with  the  Renyi-entropy  based  Hill  numbers  (Hill,  1973)  that
unified  virtually  all  existing  diversity  indexes,  Simpson’s
diversity  index,  as  a  reciprocal  of  Hill  numbers  at  diversity
order  (q=2),  still  occupies  an  important  position.  Simpson’s
paradox  may  not  only  occur  in  the  association  (correlation)
analysis,  as  in  Pearson  or  Spearman  correlation  coefficients
with  compositional  data,  but  also  in  traditional  biodiversity
analysis,  at  least  with  species  richness  (e.g.,Scheiner  et al.,
2000).  However,  detecting  when  Simpson’s  paradox  may
occur is usually not trivial,  and avoiding its introduction in the
methods for biodiversity analysis is of obvious significance, for
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which  we  will  have  a  brief  elaboration  in  the  discussion
section.

 Network diversity framework proposed by Ohlmann et al.
(2019)
The  design  goal  of  Ohlmann  et al.  (2019)  framework  for
network diversity is to understand the structure (topology) and
composition  of  ecological  networks  across  spatial  and
temporal scales and along environmental gradients (Ohlmann
et al., 2019; Pellissier et al., 2017). The general principles they
proposed can be summarized as following four points.
(i) First, Hill numbers, given the generally unifying power of

the  Hill  numbers,  they  rightly  choose  to  port  the  regular  Hill
numbers,  which  are  briefly  reviewed  in  the  Introduction
section, to ecological networks.
(ii)  Second,  the  framework  must  consider  both  the

probabilistic  nature  of  biotic  interactions  and the  abundances
of  species  or  groups.  Ohlmann  et al.  (2019)  argued  that
ecological  networks  should  be  analyzed  across  various
species  aggregation  levels  because species  redundancy  and
trophic  structures  in  communities  (ecosystems)  require  so.
Hence, in their framework, species and species groups (which
can  be  different  taxa,  diet  types,  functional  guilds,  etc.)  are
treated  as  explicit  units  for  defining  and  computing  network
diversity.  With  this  notion,  they  distinguish  microscopic,
mesoscopic and macroscopic scales, depending on the levels
of  species  aggregation  adopted.  The  microscopic  scale
network  refers  to  network  built  with  all  species,  the
mesoscopic scale network (also termed image network) refers
to  network  built  with  species  groups,  and  the  macroscopic
scale  network  refers  to  the  single  value  of  connectedness
representing  the  probability  of  interactions  between  any  two
species.  The  macroscopic  network  only  has  one  single  node
with  abundance=100%,  and  a  single  link  to  itself,  and  it  is
essentially  the  case  when  image  network  degenerates  to  its
limit of grouping all species as a single group.
(iii)  Third,  the  framework  is  applicable  for  measuring

network  diversity  locally  (with  alpha-diversity),  regionally  and
globally  (with  gamma-diversity),  and  between  local
communities  (networks)  (with  beta-diversity).  The  framework
is  hence  across  local  networks  and  defined  on  the  meta-
network  scale.  The  metanetwork  is  a  weighted  network,
consisting  of  multiple  (K)  realized  local  networks,  and  any
grouping of  species is defined on the meta-network,  which in
our  opinion  ensures  the  feasibility  to  implement  the  Hill
numbers.
(iv)  Fourth,  the  framework  includes  three  kinds  of  network

diversity:  all  are  based  on  the  Hill  numbers,  and  all  are
applicable  for  species  or  species  groups  (i.e.,  from
microscopic to macroscopic scale networks): (A) The network
diversity  in  species  (group)  abundances  (NDSA),  D(p)  is
computed  with  species  (group)  relative  abundance.  (B)  The
network  diversity  in  link  probabilities  (NDLP),  D(π)  is
computed with  adjacent  matrix,  in  which link  probabilities  are
not weighted by species (group) abundances and it  assumes
evenly  distributed  species  abundances.  (C)  The  network
diversity  in  link  abundances  (NDLA)  is  computed  with
abundance  weighted  adjacent  matrix.  In  the  following,  we
briefly  introduce  the  formulae  of  the  three  ND  definitions
based on Ohlmann et al. (2019) probabilistic network model at
species level.
Assuming a given region that is inhabited by individuals of n

different  species  with  relative  species  abundances  p=(p1,

Lij = πijpipj

p2,   …,  pn),  pi  is  the  probability  of  picking  an  individual
belonging  to  species  i.  The occurrence probability  of  species
interaction between two individuals of species i and j follows a
Bernoulli  law  of  parameter  πij.  The  probabilistic  species
network is  a  weighted network G,  in  which there are node Vi
(representing  species  i)  and Vj  (representing  species  j),  with
relative abundance pi and pj as well  as the weight (πij)  of the
link  (Vi,  Vj).  The  probability  of  picking  a  link  that  connects
(correlated)  two  individuals  belonging  to  species  i  and  j,
respectively, should be:  .
Ohlmann  et al.  (2019)  further  proposed  the  concept  of

image  network,  a  scheme  to  classify  mesoscopic  network  of
different  species  aggregation  levels:  Assuming  that  there  are
N species groups (C1, C2, …, CN) from the previously defined
probabilistic species network G (N≤n), where n  is the number
of  species  in  G.  Obviously,  when  N=n,  then  both  image
network and species network are the same, i.e., each species
is  designated  as  a  group.  Also,  obviously,  when  N=1,  the
image network  becomes the macroscopic  network  which has
single  node,  single  link,  and  a  connectedness  value  as
mentioned previously. When 1<N<n, the image network has N
species groups, and the image network is said to have a scale
of S=N/n, which is further elaborated below.

V= (V, . . . VN)
Vi

With the image network, a new set of nodes is  .
The  relative  abundances  of    (or  group  i)  can  be  computed
as:

pi = ∑
k∈Ci

pk (1)

The occurrence probability of interaction, or link probability,
between individuals from group Ci and Cj is:

πij =
∑k∈Ci,k∈Cj

πkk’pkpk’

∑k∈Ci
pk ∑k∈Cj

pk’
(2)

The  link  abundances  between  individuals  of  group  i  and  j
are defined as:

Lij = ∑
k∈Ci,k∈Cj

πkk’pkpk’ (3)

Lij

which  is  the  probability  of  picking  a  link  that  connects  two
individuals from group  i and  j, the counterpart of   at species
level (the species probabilistic network).
Based  on  the  above  definitions,  and  the  definition  of  Hill

numbers  (Chao  et al.,  2012, 2014b; Hill,  1973; Rényi,  1961),
Ohlmann et al.  (2019)  introduced the following three types of
network  diversity  (ND).  In  the  following  three  definitions, q  is
the diversity order of  Hill  numbers and was also given a new
name of   “viewpoint  parameter”  linked to  the weight  assigned
to  dominant  species  vs.  rare  species  onto  assemble  rules
(Chalmandrier et al., 2015).
The  network  diversity  of  species  abundances  (NDSA)  is

defined as:

qD (p) = ( N

∑
i=

pqi ) 
−q

. (4)

The network diversity of link probabilities (NDLP) is defined
as:

qD (π) = ⎛⎜⎝ N

∑
≤i,j≤N

( πij

π++
)q⎞⎟⎠


−q

(5)

where
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π++ =
N

∑
≤i,j≤N

πij

The network diversity of link abundances (NDLA) is defined
as:

qD (L) = ⎛⎜⎝ N

∑
≤i,j≤N

( Lij
C
)q⎞⎟⎠


−q

(6)

where

C =
N

∑
≤i,j≤N

πijpipj

The difference between NDLP (eqn. 5) and NDLA (eqn. 6),
as mentioned previously, is that the former is not weighted by
node abundance and assumes that the node abundances are
evenly  distributed,  and  the  latter  is  weighted  by  node
abundances.  Their  primary  commonality  is  that  both  NDLP
and NDLA are based on link probabilities.
Ohlmann  et al.  (2019)  defined  the  scale  of  the  image

network as: S=N/n. If S =1, the network is considered to be at
microscopic  scale,  or  species  level  image  network.  If S=1/n,
the  network  is  considered  to  be  at  macroscopic  scale.  If
1/n<S<1,  the  network  is  considered  to  be  at  mesoscopic
scale.  In  this  study,  we  adopt  the  microscopic  or  original
species-scale  network,  built  with  SparCC  correlations
(Friedman & Alm, 2012).
In  summary,  Ohlmann  et al.  (2019)  network  diversity  has

three  metrics  as  defined  by  eqns.  (4–6),  network  diversity  of
relative  species  abundances (NDSA) (i.e.,  diversity  of  nodes,
eqn.  4),  network  diversity  of  link  probabilities  (NDLP)  (i.e.,
diversity of link probabilities, eqn. 5), and network diversity of
link abundances (NDLA) (i.e., diversity of nodes-links, eqn. 6).
In our opinion, the most informative network diversity metric is
the  last  one —the  NDLA  since  it  synthesizes  the  diversity
information of both nodes and links on the network, while the
other two NDs only quantify the diversity information of either
nodes or links.

 RESULTS

 Building  microbial  co-occurrence  networks  for  AGM
datasets
Since  the  AGM  datasets,  with  its  4  903  microbial  samples
covering  318  animal  species  from  four  major  invertebrate
classes  and  all  six  vertebrate  classes,  are  so  extensive  that
building  microbial  networks  for  all  species  or  all  taxa  will  be
too computationally intensive, we selectively build 17 microbial
networks  to  compute  the  network  diversity.  Specifically,  at
animal  host  species  level,  we  randomly  chose  two  animal
species,  i.e.,  Apis  mellifera  and Bos  taurus  to  construct  their
gut  microbial  networks.  At  animal  host  class  level,  we  built
their microbial networks for all 10 animal classes, one for each
class.  At  animal  phylum level,  we built  two networks,  one for
invertebrates  and  another  for  vertebrates.  Finally,  we  built
three  microbial  networks  for  three  diet  types  (carnivores,
herbivores, and omnivores), respectively.
To  build  the  17  microbial  networks  for  selected  17  animal

taxa/diet  types,  we  first  compute  the  SparCC  correlation
coefficients with FDR control of P=0.05 from the OTU tables of
the  AGM  datasets.  The  SparCC  correlation  coefficients  are
advantageous  over  commonly  used  Pearson  and  Spearman

correlation  coefficients  because  it  overcomes  their  issues  in
processing  compositional  (abundance)  data,  but  the
computational  load  of  SparCC  is  far  heavier  (about  1  000
times  more)  than  that  of  Pearson  or  Spearman  methods,
which  explains  why  we  selectively  built  17  networks,  rather
than for all possible animal species or taxa.
We  further  compare  the  network  diversity  of  different

taxa/diet-types  by  performing  randomization  (permutation)
tests  with  1  000  times  of  re-sampling  and  P-value
threshold=0.05. This means that, for each comparison of both
taxa  or  diet-types,  1  000  pairs  of  SparCC  networks  must  be
built  for  the  two  taxa  or  diet  types  (out  of  the  previously
counted 17 networks), rather than only two networks. A total of
9  000  microbial  networks  with  SparCC  correlation  algorithm
were  constructed  in  this  study  to  perform  the  permutation
tests. Figure 2 illustrates the microbial network for the class of
Amphibia to get a general glimpse of the networks built in this
study.

 Computing  the  network  diversities  for  microbial  co-
occurrence networks of AGMs datasets
We  computed  Ohlmann’s  network  diversity  (OND)  for  the
AGM  microbial  networks  of  the  17  taxa/diet-  types  hosts.
Since there are  two types of  correlations (links),  positive  and
negative,  there  can be  three  different  ways  to  compute  OND
for  each  network.  That  is,  computing  the  OND  for  positive
links, negative links, and total links (using the absolute values
of SparCC correlation coefficients).
Table  1 below exhibits  the  results  of  the  OND for  the  total

links,  and  Supplementary  Table  S1  in  the  online
supplementary  information  (OSI)  exhibits  the  corresponding
results  of  the  permutation  tests  for  comparing  the  OND  of
different  taxa/diet  types.  Supplementary  Tables  S2,  S3  and
Tables S4, S5 in the OSI exhibited the results of the OND and
corresponding  permutation  tests  for  positive  and  negative
links, respectively.
Comparing the OND results of total links, positive links and

negative  links,  we  realize  that  separating  the  positive  and
negative  links  did  not  introduce  tangible  benefits  other  than
the additional computational complexity. For this, we focus on
the  results  of  the  total  links  by  using  absolute  values  of
SparCC  correlation  coefficients  (Table  1),  and  we  do  not
recommend  the  separate  treatments  for  general  purpose
study of biodiversity on networks.
As  shown  in  Table  1,  the  first  metric  of  network  diversity,

namely network species (node) diversity, computed as the Hill
numbers  of  species  relative  abundances,  is  essentially  the
same  as  traditional  species  diversity  in  community  ecology,
except  that  the  species  are  conceptually  called  network
nodes.  Obviously,  in  the  case  of  network  species  diversity,
links  (correlations)  do  not  weigh  in.  The  second  metric  of
network diversity,  namely network link diversity,  computed as
the  Hill  numbers  of  the  link  probability,  is  essentially  the
diversity of links in the network, and the species abundances
do not  weigh in here.  The third,  namely the network diversity
of  abundance-weighted  links  or  simply   “network  abundance-
link  diversity”  for  short  is  obviously  the  most  comprehensive
network  diversity  metric  among  all  three  OND  indexes,  and
both species abundances and links (correlations) weigh in for
its definition. For this, we consider the third metric of network
diversity of abundance-weighted links (the last four columns in
Table  1  and  Supplementary  Tables  S1–S5)  as  the  most
representative.  Figures  3–5  illustrate  the  three  types  of

58      www.zrdc.ac.cn



network  diversity  explained  above  for  the  17  taxa/diet-types,
using all links in the AGM networks (without distinguishing the
positive and negative links).
Supplementary  Tables  S1,  S3,  and  S5  showed  the  results

(P-values) of the permutation tests from comparing the ONDs
of  commensurable  taxa/diet  types.  It  turned  out  that  none  of
the  compared  taxa/diet-types  exhibited  significant  differences
in their network diversity. In our opinion, the network diversity,
especially  the  network  diversity  of  abundance-weighted  links
is essentially a measure of network “heterogeneity” as further
discussed below.

 CONCLUSIONS

The  primary  objective  of  this  article  is  to  systematically
analyze  the  microbial  network  diversity  with  extensive  4  903
AGM  (animal  gastrointestinal  microbiome)  samples  covering
four major invertebrate classes and all six vertebrate classes,
as  well  as  three  major  diet  types.  We  first  selectively
constructed 17 microbial co-occurrence networks with SparCC
correlation  algorithm,  as  the  implementations  for  Ohlmann
et al.  (2019)  probabilistic  network  model.  The  17  microbial
networks  span  species  (2  representative  species),  class  (10
classes),  phylum  (invertebrate  and  vertebrate),  diet  types
(carnivores,  herbivores,  and  omnivores).  For  each  of  the  17
microbial  cooccurrence networks,  we computed their  network
diversities in terms of Ohlmann et al. (2019) three metrics. We
separately  computed  the  network  diversity  for  positive,
negative  and  total  network  links,  but  found  that  the  separate

treatments have little benefits and using total links (or absolute
values  of  SparCC correlation  coefficients)  is  both  simple  and
sufficient for measuring network biodiversity. These results, for
the  first  time,  sketched  out  the  animal  microbial  diversity  of
biotic interactions across animal species, class, phylum scales
from  host  perspective,  and  across  community,
metacommunity  and  landscape  scales  from  microbial
perspective.
A  secondary  objective  of  this  article  has  something  to  do

with the two realities in  the field  of  measuring biodiversity:  (i)
The rediscovery of  Hill  numbers approximately a decade ago
offers  a  unified  approach  to  measuring  biodiversity,  and  the
unification  establishes  a   “convertible  common  currency”  or
gold standard by default. However, the Hill numbers have not
been  widely  used  by  practitioners,  perhaps  due  to  the
interpretations  of  the  Hill  numbers  are  still  not  sufficiently
clear.  Recall,  it  took  scientists  of  biodiversity  research  near
four decades to correctly decode Hill  (1973) message, and in
fact,  the  field  of  biodiversity  measure  requires  deep
mathematical  foundation  and  is  deceivingly  simple.  (ii)  While
Hill  numbers  resolved  the  four  major  issues  associated  with
measuring diversity, as outlined in the introduction section, the
Hill  numbers per  se  in  terms  of  species  abundances  cannot
measure  species  interactions.  This  inability  requires  porting
the Hill numbers on ecological networks, but this topic is still in
its  infancy  and  there  are  only  a  handful  of  studies  (Bersier
et al.,  2002;  Luna  et al.,  2020;  Ohlmann  et al.,  2019;  Poisot
et al.,  2012b,  2016).  In  consider  of  these  realities,  we
presented  reviews  on  the  key  literatures  on  measuring

 

Figure 2  Microbial species cooccurrence networks of Amphibia class, built with SparCC correlation coefficients (with FDR control of P-
value=0.05)
Green links and red links represent positive and negative correlations, respectively; the line thickness represents for the level of correlations, and
circle (network node) size represents the level of connectedness (=network degree/abundance).
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biodiversity with slightly more details than usually presented in
a  research  article,  which  can  be  considered  as  a  secondary
objective  of  this  article —hoping  to  generate  some  tutorial
effect.

 DISCUSSION

Measuring microbial diversity on networks or network diversity
is  still  an  emerging  research  topic,  and  to  the  best  of  our
knowledge,  this  article  should  be  the  first  comprehensive
estimation of the network diversity of animal microbiomes with
extensive  metagenomic  samples.  Still,  our  study  is  at  the
stage of estimating the network diversity, and a consequence
of  such  an  exploratory  study  is  that  the  implications
(significance)  of  our  results  are  not  self-evident.  That  is,  the
significance  requires  future  studies.  For  this,  we  can  only
speculate  the  implications  of  our  results.  In  the  remainder  of
this  article,  we  suggest  three  types  of  possible  implications
from our study, including (i) dynamics (including extinctions) of
species  interactions  may  possess  importance  significance  in
conservation  biology  and  agriculture  (e.g.,  crop
pollinations)—both  rare  species  and  rare  interactions  matter;
(ii)  network  diversity  may  be  helpful  for  resolving  previously
mentioned  Simpson’s  paradox;  (iii)  network  diversity  and
ecological heterogeneity.
A  general  consensus  is  that  dominant  and  more  abundant

species  interact  more  than  less  abundant  and  rare  species
(Dee  et al.,  2019;  Luna  et al.,  2020),  and  our  AGM  datasets
support  this  consensus  in  a  pre-experiment  data  analysis  (in
which  there  is  a  statistically  significant  positive  correlation
between  network  node  degrees  and  node  abundances).  The
dominant  and  abundant  species  are  assumed  to  play  more

important  roles  in  maintaining  ecosystem  functions  than  rare
species  and  their  interactions  (Luna  et al.,  2020).  As  argued
by  Luna  et al.  (2020),  since  majority  of  species  are  rare  and
are often specialists, determining how the rare species interact
with  common/dominant  species  and  with  other  rare  species
may  help  to  broaden  our  understanding  of  community
structure and dynamics. Endangered species are not only rare
in abundances, but also, usually,  rare in species interactions.
As  Daniel  Jansen  once  warned:   “ What  escapes  the  eye,
however,  is  a  much  more  insidious  kind  of  extinction:  the
extinction  of  ecological  interactions”  (Janzen,  1974;  cited  by
Luna et al.,  2020).  In  crop-pollinator  mutualism networks,  the
breakup  of  the  links  may  jeopardize  the  crop  flowering  and
influence crop production (Luna et al., 2020). The suppression
of  biological  invasions  in  agriculture  and  forestry  by  foreign
species should obviously pay attention to the establishment of
new links (interactions) with native species.
Next,  we  revisit  the  previously  mentioned  Simpson’s

paradox,  which  has  various  aliases  such  as  association
paradox, Yule-Simpson effect in statistics. Simpson’s paradox
refers  to  a  logical  contradiction  that  may  occur  when  the
marginal  association  between  two  categorical  variables  is
qualitatively  different  (e.g.,  the  opposite  trend  or  relationship)
from  the  partial  association  between  the  same  two  variable
when  a  third  associated,  but  previously  unobserved  or
controlled  variable,  is  introduced  (Carlson,  2023).  Simpson’s
paradox  was  often  illustrated  with  a  simple  example  of  sex
bias  during  the  graduate  student  admission.  Inspired  by  the
example of graduate admission (Carlson, 2023) and a recently
debated  preprint  on  the  relationship  between  COVID-19
mortality  and  the  consumption  of  vegetable  kinds  (Fonseca

Table 1  The three metrics of  network diversity,  all  measured in Hill  numbers of  different  diversity orders (q=0,  1,  2,  3)  of  AGM (animal
gastrointestinal  microbiome) networks of  all  links,  built  with SparCC correlation coefficients (FDR (False Discovery Rate)  control  of P-
value=0.05)
 

Taxon
level

Taxon

NDSA (network diversity in
species (or group) abundances):
computed with species (group)
relative abundance D(p)

NDLP (network diversity in link probabilities):
computed with adjacent matrix (i.e., matrix of
correlation coefficients) D(π)

NDLA (network diversity in link
abundances): computed with species
(group) abundance-weighted adjacent
matrix (i.e., matrix of link abundances)
D(L)

q=0 q=1 q=2 q=3 q=0 q=1 q=2 q=3 q=0 q=1 q=2 q=3
Species Apis mellifera 218 74.41 46.36 35.81 5427 4519.36 3437.32 2585.82 5427 235.02 81.77 54.90

Bos taurus 1362 714.48 278.11 140.78 301000 284275.50 266705.76 249073.1 301000 50280.13 6583.18 2198.32
Class Chromadorea 894 105.05 42.29 27.78 53722 46703.49 38876.75 31821.13 53722 885.81 184.09 89.91

Arachnida 412 63.22 38.25 29.96 3667 3406.86 3090.41 2744.53 3667 74.06 25.65 16.63
Malacostraca 576 39.40 14.83 10.67 37106 35836.17 34569.37 33312.37 37106 364.07 70.47 37.05
Insecta 1140 127.82 33.13 20.59 40072 32730.32 26323.38 21159.26 40072 576.99 64.52 33.19
Chondrichthyes 475 38.33 9.73 6.05 15655 15036.55 14419.30 13822.17 15655 300.45 66.60 37.72
Actinopteri 1186 291.88 110.06 64.21 148809 115001.15 82478.72 60653.24 148809 6468.19 1189.99 585.70
Amphibia 408 129.39 46.08 28.20 15968 15549.59 15136.68 14734.27 15968 1678.04 336.89 161.11
Sauropsida 1689 425.34 127.09 69.04 222130 201525.25 179310.77 157683.7 222130 9890.82 1247.97 559.67
Aves 1811 397.57 137.03 86.43 133688 115577.97 96241.29 78322.05 133688 3578.11 689.80 350.41
Mammalia 4245 1157.71 299.76 166.03 228601 189925.94 156655.69 131124.0 228601 13343.53 1510.62 585.38

Phylum Invertebrates 1565 249.85 68.49 38.97 51781 42382.64 34328.43 27887.94 51781 1409.42 129.21 56.31
Vertebrates 3378 1269.24 475.36 274.46 143030 104040.89 74225.48 55291.42 143030 10938.46 1173.95 440.00

Diet
types

Carnivore 2311 813.18 315.47 189.97 197864 146148.64 101829.03 74379.82 197864 8917.03 1318.69 583.28

Herbivore 2390 354.60 81.30 45.11 96952 79281.92 64221.70 52273.98 96952 2399.03 388.10 196.51
Omnivore 3201 922.23 255.16 119.74 161060 132017.77 107003.60 87555.73 161060 7306.79 269.03 91.73

Mean (SE)
1603.59
(283.74)

421.98
(98.06)

139.91
(32.78)

79.64
(18.15)

109207.76
(22155.09)

91997.65
(19453.08)

76403.16
(17271.93)

64377.91
(15601.85)

109207.76
(22155.09)

6979.17
(2904.78)

901.8
(377.54)

357.52
(127.28)

Range (min, max)
(218,
4245)

(38.33,
1269.24)

(9.73,
475.36)

(6.05,
274.46)

(3667,
301000)

(3406.86,
284275.5)

(3090.41,
266705.76)

(2585.82,
249073.1)

(3667,
301000)

(74.06,
50280.13)

(25.65,
6583.18)

(16.63,
2198.32)
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et al.,  2020),  here,  we  contrive  a  fictious  scenario  with  the
association  between  COVID-19  severity  and  the  usage  of
probiotics. For example, one may try to test a hypothesis that
probiotics may strengthen one’s immune system by maintain a
healthy  gut  microbiome,  and  consequently  could  lower  the
mortality  of  COVID  patients.  It  is  possible  to  find  a  negative
correlation  between  probiotics  usages  and  mortality  rates.
However, if the researcher forgot to control the nutrition of the
participants. For example, it might be the case that the group
with  probiotics  may  have  better  appetite  than  the  control
group, and if the difference in food intake is significant, then a
data  reanalysis  by  regrouping  in  terms  of  the  level  of  food
intake,  the  previously  observed  probiotics-mortality
relationship  may  become  statistically  insignificant  or  even
reversed.  In  other  words,  the  confounding  effects  of  food
intake, as a third variable, may create a paradox with previous
trend when it  is  ignored.  In  this  case,  it  is  hard to  distinguish
the effects of probiotics with better nursing care, possibly with
a better  chef.  Perhaps,  it  is  for  similar  reason,  the previously
mentioned study on the COVID-19 mortality and consumption
kinds  of  vegetables  in  different  European  countries  had
received extensive attention among ecologists,  given that the
authors  started  their  paper  with:   “Many  foods  have  an
antioxidant  activity,  and  nutrition  may  mitigate  COVID-19.  To
test  the  potential  role  of  vegetables  in  COVID-19  mortality  in
Europe,  we  performed  an  ecological  study”  (Fonseca  et al.,
2020).  We  are  not  in  a  position  to  cast  support  or  doubt  to
their  study.  It  is  the  wide  discussion  on  their  study  in  social
media (the paper was twitted more than 2 000 times within a

few  months)  that  prompted  us  to  make  our  own  fictitious
example  for  explaining  the  fallacy  that  does  not  seem  to  be
uncommon.
As  mentioned  previously,  Simpson’s  paradox  may  happen

in  the  inferences  of  species  correlation  coefficients,  if
traditional  Pearson or  Spearman correlation coefficients were
used.  For  this  reason,  we  adopted  Friedman  &  Alm  (2012)
SparCC correlations.  Simpson’s  paradox  can  also  occur  with
the simplest  diversity index—species richness (as reveled by
Scheiner  et al.,  (2000)).  Another  ecological  scenario  that
Simpson’s paradox could occur can be the studies of species
interactions  when  indirect  effects  are  ignored.  Obviously
pairwise species interactions are simplified views, and indirect
effects among species interactions are likely to be ubiquitous.
In a still simplified view of three species system, consisting of
donor,  transmitter  and  receiver,  the  donor’s  effect  is
transmitted  to  the  received  indirectly  through  the  transmitter.
The  indirect  effects  may  act  through  so-called   “interaction
chain indirect effect”, in which a species indirectly affect others
by  influencing  the  abundance  of  an  intermediate  transmitter
species. Alternatively, the indirect effects may act through so-
called   “interaction  modification  indirect  effect”,  in  which  the
donor  species  alters  the  per  capita  effect  of  the  intermediate
transmitter  species  on  the  receiver  species,  but  without
changing the abundance of transmitter species (Morin, 1999).
These  indirect  effects  may  generate  so-terms  apparent
competition,  consumptive  competition,  indirect  mutualism,
indirect  commensalism,  keystone  predation,  trophic  cascade,
etc. (Morin, 1999). Determining indirect effects per se  itself  is

 

Figure 3  The network species (node) diversity measured in Hill numbers at diversity orders (q=0, 1, 2, 3), computed with relative species
(node) abundances on SparCC species cooccurrence networks of all links
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hardly  possible  without  well  designed  experimental  studies,
not  to mention of  detection of  potential  Simpson’s paradox in
data  analysis.  On  the  positive  side,  the  unified  approaches
such  as  Ohlmann  et al.  (2019)  network  diversity  framework
with  the  Hill  numbers,  supported  by  SparCC  correlation
algorithms, is likely to lower the risk of falling in the trap of the
paradox, thanks to their rigorous schemes used to aggregate
species, constructing subnetworks, and computing interaction
probabilities.  Of  course,  we  do  not  claim  that  these
approaches  can  eliminate  the  risks  of  Simpson’s  paradox,
which  ultimately  depends  on  properly  designed  experiments
for data collection.
If  we  recognized  a  fundamental  different  between  network

diversity such as Ohlmann et al. (2019) and Luna et al. (2020)
with  traditional  biodiversity  is  the  inclusion  of  species
interactions  with  network  diversity,  then  network  diversity
actually  reaches  out  to  another  fundamental  concept  in
ecology,  i.e.,  the  ecological  heterogeneity.  One  may  argue
that heterogeneity and evenness (a major aspect of diversity,
and  the  other  is  species  richness)  can  be  considered  both
sides  of  same  coin  since  literally  heterogeneity  and
unevenness  are  close  to  be  synonyms.  Nevertheless,  this
analogy highlighted their  similarity but seemed to ignore their
difference. By pointing out this negligence, we do not mean to
criticize  the  notion,  and  in  fact,  we  have  made  similar
analogies  previously  in  our  own  publications  (Ma,
2020a,2020b;  Ma  &  Ellison,  2018,  2019).  In  our  opinion,
except  for  a  handful  of  exceptions,  from  academia  through
societies  to  many  cultures,  diversity  and  heterogeneity  are

often not rigorously distinguished, if not used interchangeably.
One  exception  we  are  aware  of  distinguish  diversity  from
heterogeneity  is  Shavit  et al.  (2016)  quotes  of  Robert  Frost
(1916) “Two roads diverged in a wood, and I took the one less
traveled by, and that has made all the difference.” We concur
with  them  that  heterogeneity  has  received  relatively  little
attention  than  diversity,  especially  in  community  ecology
where  diversity  research  has  occupied  a  center  position  for
long time. Another exception is a motto by Aaron Ellison “Zoos
are  diversity,  and  natural  ecosystems  are  heterogenous”
(personal communication, cited in Ma (2020a)). A fundamental
difference  between  heterogeneity  and  diversity  identified  by
Shavit  &  Ellison  et al.  (2016),  is  that  heterogeneity  must
consider  interactions  in  a  group  context  (group  behavior),
while diversity is measured in numbers or relative abundances
(more strictly equivalent numbers with Hill numbers). From this
perspective, the network diversities in link probabilities or link
abundances,  demonstrated  in  this  study,  actually  measure
heterogeneity.  It  should  be  noted  that  the  concept  of
heterogeneity is not limited to ecology, and its usages are as
wide as diversity, if  not more. In fact, in many fields, diversity
and  heterogeneity  are  interwoven  and  sometimes  crossly
measured.  This  recent  monograph  (Guajardo,  2023)  that
mixes  diversity  and  heterogeneity  concepts  and  uses
Simpson’s  diversity  index  to  measure  heterogeneity  is  an
example  to  demonstrate  the  enormous  challenge  to
distinguish the both.
Finally,  with  gratitude,  we  would  like  to  mention  certain

limitations of  this study, which were prompted by anonymous

 

Figure 4  The  network  link  diversity  measured  in  Hill  numbers  at  diversity  orders  (q=0,  1,  2,  3),  computed  with  the  link  probability  on
SparCC species cooccurrence networks of all links
 

62      www.zrdc.ac.cn



expert  reviewers  of  this  article.  First,  although  we  previously
claim  that  the  diversity  partition  problem  is  largely  solved  in
traditional  community  ecology,  and  furthermore,  Ohlmann
et al.  (2019) also developed the diversity partition solution for
their  network diversity  indexes by distinguishing single (local)
network (alpha diversity) vs. meta-network (gamma diversity),
the  diversity  partition  in  a  network  setting  is  much  more
complex  than  that  in  traditional  community  ecology.  For
example,  to  build  a  network,  usually  multiple  community
samples  from  same  or  different  (local)  communities  must  be
taken, which may involve meta-community if  the samples are
taken  from  different  communities.  In  the  present  study,  our
measures  of  network  diversity  are  limited  to  alpha  diversity,
given  that  a  single  network  is  built  for  each  taxa  level.
Theoretically,  with  the  AGM  datasets  and  Ohlmann  et al.
(2019) framework, it  is possible to build hierarchical networks
corresponding  to  different  taxa  levels,  with  each  subnetwork
corresponding  to  a  taxa  level.  Then,  it  is  possible  to  apply
Ohlmann  et al.  (2019)  partition  scheme  for  network  diversity.
Second,  in  ecological  networks,  network  specialization  (or
interaction unevenness, see Luna et al. (2020)) quantifies the
degree  of  how  specialized  the  interactions  between  species
are.  As  with  network  diversity,  network  specialization  is  a
multi-faceted concept and can be measured in different ways
(see  an  excellent  review  by  Poisot  et al.  (2012a)).  A
comparative  study  of  network  specialization  with  network
diversity  would  be  a  very  interesting  research  topic.  Third,
although  we  previously  claim  that  the  sampling  problem  in
conventional  community  ecology  is  largely  solved,  the

sampling  problem  also  arises  in  networks  when  interaction
frequency data are used to measure network diversity. On this
issue,  two  important  studies  exist  (Chacoff  et al.,  2012;
Jordano,  2016).  Fourth,  although  we  suggest  previously  that
SparCC algorithm (Friedman & Alm, 2012) is one of the most
appropriate  algorithms  for  building  species  co-occurrence
network  and  is  used  in  this  study  given  its  advantage  in
processing  compositional  data,  other  alternative  algorithms
can  produce  different  results  even  for  same  datasets.
Currently  there  is  not  yet  a  consensus  on  possible  standard
method  for  building  ecological  networks,  and  the  issue  is
obviously  worthy  of  further  investigations.  Fifth,  the approach
we  implemented  and  demonstrated  in  this  article  can  be
applied to other general animal microbiome datasets such as
Cui et al.  (2019), Li & Ma (2019), Li et al.  (2020), Xiong et al.
(2019),  Zhang et al.  (2019),  Zhu et al.  (2015).  Further  testing
with other animal microbiome datasets may be helpful not only
for  testing  the  approach,  but  also  for  revealing  biological
insights of those specific studies.
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Figure 5  The network diversity measured in Hill  numbers at diversity orders (q=0, 1, 2, 3), computed with the abundance-weighted link
probability on SparCC species cooccurrence networks of all links
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